$${\textbf{Step - 1: Finding probabilities of different
possible events}}$$
$${\text{Case - 1: Head appears on the coin, }}$$
$${\text{P}}\left(
{\dfrac{{\text{W}}}{{\text{H}}}} \right){\text{
= Probability of drawing white
ball from urn 2, when head appears on the coin}}$$
$$
\Rightarrow {\text{ P}}\left( {\dfrac{{\text{W}}}{{\text{H}}}}
\right){\text{ = }}\left( {\dfrac{{^{\text{3}}{{\text{C}}_{\text{1}}}}}{{^{\text{5}}{{\text{C}}_{\text{1}}}}}{\text{
}} \times {\text{ }}\dfrac{{^{\text{2}}{{\text{C}}_{\text{1}}}}}{{^{\text{2}}{{\text{C}}_{\text{1}}}}}{\text{
}} \times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{(when white
is tranferred) }}$$
$${\text{ + }}\left( {\dfrac{{^{\text{2}}{{\text{C}}_{\text{1}}}}}{{^{\text{5}}{{\text{C}}_{\text{1}}}}}{\text{
}} \times {\text{ }}\dfrac{{^{\text{1}}{{\text{C}}_{\text{1}}}}}{{^{\text{2}}{{\text{C}}_{\text{1}}}}}{\text{
}} \times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}} \right)({\text{when red is
transferred)}}$$
$$ \Rightarrow
{\text{ P}}\left( {\dfrac{{\text{W}}}{{\text{H}}}} \right){\text{ =
}}\left( {\dfrac{{\text{3}}}{{\text{5}}}{\text{ }} \times {\text{ 1 }}
\times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{ +
}}\left( {\dfrac{{\text{2}}}{{\text{5}}}{\text{ }} \times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}{\text{
}} \times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{ = }}\dfrac{{\text{3}}}{{{\text{10}}}}{\text{ + }}\dfrac{{\text{1}}}{{{\text{10}}}}{\text{ = }}\dfrac{{\text{2}}}{{\text{5}}}$$
$${\text{Case - 2: Tail appears on the coin,}}$$
$${\text{P}}\left(
{\dfrac{{\text{W}}}{{\text{T}}}} \right){\text{
= Probability of drawing white
ball from urn 2, when tail appears on the coin}}$$
$$
\Rightarrow {\text{ P}}\left( {\dfrac{{\text{W}}}{{\text{T}}}}
\right){\text{ = }}\left( {\dfrac{{^{\text{3}}{{\text{C}}_{\text{2}}}}}{{^{\text{5}}{{\text{C}}_{\text{2}}}}}{\text{
}} \times {\text{ }}\dfrac{{^{\text{3}}{{\text{C}}_{\text{1}}}}}{{^{\text{3}}{{\text{C}}_{\text{2}}}}}
\times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}} \right)({\text{when 2 white
are transferred) }}$$
$${\text{+ }}\left( {\dfrac{{^{\text{2}}{{\text{C}}_{\text{2}}}}}{{^{\text{5}}{{\text{C}}_{\text{2}}}}}{\text{
}} \times {\text{ }}\dfrac{{^{\text{1}}{{\text{C}}_{\text{1}}}}}{{^{\text{3}}{{\text{C}}_{\text{1}}}}}
\times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}} \right)({\text{when 2 red is transferred)}}$$
$${\text{ + }}\left( {\dfrac{{^{\text{3}}{{\text{C}}_{\text{1}}}{\text{
}} \times {{\text{ }}^{\text{2}}}{{\text{C}}_{\text{1}}}}}{{^{\text{5}}{{\text{C}}_{\text{2}}}}}{\text{
}} \times {\text{ }}\dfrac{{^{\text{2}}{{\text{C}}_{\text{1}}}}}{{^{\text{3}}{{\text{C}}_{\text{2}}}}}{\text{
}} \times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}} \right)({\text{when 1 red
and 1 white is transferred)}}$$
$$ \Rightarrow
{\text{ P}}\left( {\dfrac{{\text{W}}}{{\text{T}}}} \right){\text{ =
}}\left( {\dfrac{{{\text{3 }} \times {\text{ 2}}}}{{{\text{5 }} \times
{\text{ 4}}}}{\text{ }} \times {\text{ 1 }} \times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}}
\right){\text{ + }}\left( {{\text{ }}\dfrac{{{\text{1
}} \times {\text{ 2}}}}{{{\text{5 }} \times {\text{ 4}}}}{\text{ }} \times
{\text{ }}\dfrac{{\text{1}}}{{\text{3}}}{\text{ }} \times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}}
\right)$$
$$+\left( {\dfrac{{{\text{3 }} \times {\text{ 2 }} \times {\text{ 2}}}}{{{\text{5 }} \times {\text{ 4}}}}{\text{ }} \times {\text{ }}\dfrac{{\text{2}}}{{\text{3}}}{\text{ }} \times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}} \right)$$
$$
\Rightarrow {\text{ P}}\left( {\dfrac{{\text{W}}}{{\text{T}}}}
\right){\text{ = }}\dfrac{{\text{3}}}{{{\text{20}}}}{\text{ + }}\dfrac{{\text{1}}}{{{\text{60}}}}{\text{ + }}\dfrac{{\text{1}}}{{\text{5}}}{\text{ = }}\dfrac{{{\text{11}}}}{{{\text{30}}}}$$
$${\textbf{Step - 2: Finding total probability}}$$
$${\text{P =
P}}\left( {\dfrac{{\text{W}}}{{\text{H}}}} \right){\text{ +
P}}\left( {\dfrac{{\text{W}}}{{\text{T}}}} \right)$$
$$
\Rightarrow {\text{ P = }}\dfrac{{\text{2}}}{{\text{5}}}{\text{ + }}\dfrac{{{\text{11}}}}{{{\text{30}}}}{\text{ = }}\dfrac{{{\text{23}}}}{{{\text{30}}}}$$
$$\mathbf{{\text{Hence, the probability that a white ball is drawn from Urn 2 is }}\dfrac{{{\text{23}}}}{{{\text{30}}}}}$$