Let $$E_{1}$$ be the event that die $$A$$ is used and $$E_{2}$$ be the event that die $$B$$ is used
Let $$C$$ be the event that a red face appears in any throw. $$ P(E_{1}) = \displaystyle\frac{1}{2} = P(E_{2})$$
$$ P(C/E_{1}) = \displaystyle\frac{^{4}C_{1}}{^{6}C_{1}} = \displaystyle\frac{2}{3}$$,
$$P(C/E_{2}) = \displaystyle\frac{^{2}C_{1}}{^{6}C_{1}} = \displaystyle\frac{1}{3}$$
$$\displaystyle P(C) = P(E_{1}) P (C/E_{1}) + P(E_{2}). P(C/E_{2}) = 1/2 \times 2/3 + 1/2 \times 1/3 = 1/2$$
Let $$ D$$ be the event that red face appears in third throw Let $$E$$ be the even that red face appears in first two throws$$ P(E_{1}) = P(E_{2}) = \displaystyle\frac{1}{2}$$
$$ P(E/E1) = \displaystyle\frac{2}{3}.\displaystyle\frac{2}{3} =\left(\displaystyle\frac{2}{3}\right)^{2}$$,
$$P(D/EE_{1}) = \displaystyle\frac{2}{3}$$
$$ P(E/E2) = \displaystyle\frac{1}{3} \times \displaystyle\frac{1}{3} =\left(\displaystyle\frac{1}{3}\right)^{2}$$
$$ P(D/EE_{2}) = \displaystyle\frac{1}{3}$$
$$ P(D/E) = \displaystyle\frac{P(E_{1} ) P(E/E_{1} )P(D/EE_{1} ) + P(E_{2} ).P(E/E_{2} )P(D/EE_{2} )}{P(E_{1} ).P(E/E_{1} ) + P(E_{2} ).P(E/E_{2} )}$$
$$= \displaystyle\frac{1/2(2/3)^{2} \times 2/3 + 1/2(1/3)^{2} \times 1/3}{1/2 \times (2/3)^{2} + 1/2 \times (1/3)^{2}} = \displaystyle\frac{3}{5}$$