Self Studies

Probability Test 21

Result Self Studies

Probability Test 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A bag contains some white and some black balls, all of which are distinguishable from each other, all combinations of balls being equally likely. The total number of balls in the bag is $$10$$. If three balls are drawn at random and all of them are found to be black, the probability that the bag contains $$1$$ white and $$9$$ black balls is :
    Solution
    Possible cases are: 
    (i) $$3B, 7W$$; (ii) $$4B, 6W$$; (iii) $$5B, 5W$$; (iv) $$6B, 4W$$;
    (v) $$7B, 3W$$; (vi) $$8B, 2W$$; (vii) $$9B, 1W$$; (viii) $$10B, 0W$$
    Probability of each case $$=\dfrac { 1 }{ 8 } $$
    Probability of getting $$3B$$ in the above cases:
    (i) $$\dfrac { ^{ 3 }C_{ 3 } }{ ^{ 10 }C_{ 3 } } $$; (ii) $$\dfrac { ^{ 4 }C_{ 3 } }{ ^{ 10 }C_{ 3 } } $$; (iii) $$\dfrac { ^{ 5 }C_{ 3 } }{ ^{ 10 }C_{ 3 } } $$; (iv) $$\dfrac { ^{ 6 }C_{ 3 } }{ ^{ 10 }C_{ 3 } } $$

    (v) $$\dfrac { ^{ 7 }C_{ 3 } }{ ^{ 10 }C_{ 3 } } $$; (vi) $$\dfrac { ^{ 8 }C_{ 3 } }{ ^{ 10 }C_{ 3 } }$$; (vii) $$\dfrac { ^{ 9 }C_{ 3 } }{ ^{ 10 }C_{ 3 } } $$; (viii) $$\dfrac { ^{ 10 }C_{ 3 } }{ ^{ 10 }C_{ 3 } } $$

    Therefore, required probability is
    $$ \displaystyle \dfrac { \dfrac { ^{ 9 }C_{ 3 } }{ ^{ 10 }C_{ 3 } } \times \dfrac { 1 }{ 8 }  }{ \left( \dfrac { ^{ 3 }C_{ 3 } }{ ^{ 10 }C_{ 3 } } +\dfrac { ^{ 4 }C_{ 3 } }{ ^{ 10 }C_{ 3 } } +\dfrac { ^{ 5 }C_{ 3 } }{ ^{ 10 }C_{ 3 } } +\dfrac { ^{ 6 }C_{ 3 } }{ ^{ 10 }C_{ 3 } } +\dfrac { ^{ 7 }C_{ 3 } }{ ^{ 10 }C_{ 3 } } +\dfrac { ^{ 8 }C_{ 3 } }{ ^{ 10 }C_{ 3 } } +\dfrac { ^{ 9 }C_{ 3 } }{ ^{ 10 }C_{ 3 } } +\dfrac { ^{ 10 }C_{ 3 } }{ ^{ 10 }C_{ 3 } }  \right) \dfrac { 1 }{ 8 }  } =\dfrac { 84 }{ 330 } =\dfrac { 14 }{ 55 } $$

    Hence, A is correct.
  • Question 2
    1 / -0
    A man is known to speak the truth $$3$$ out of $$4$$ times. He throws a die and reports that it is a six. The probability that it is actually a six is
    Solution
    Probability that man speaks the truth is $$\dfrac{3}{4}$$.

    The probability that man lies is $$\dfrac{1}{4}$$.

    Probability of getting a 6 $$=\dfrac{1}{6}$$

    Probability of not getting a six $$=\dfrac{5}{6}$$

    Applying Baye's theorem, we get the required probability as 
    $$\dfrac{\dfrac{1}{6}.\dfrac{3}{4}}{\dfrac{1}{6}.\dfrac{3}{4}+\dfrac{5}{6}.\dfrac{1}{4}}$$

    $$=\dfrac{3}{8}$$.

  • Question 3
    1 / -0
    In an entrance test, there are multiple choice questions. There are four possible options of which one is correct. The probability that a student knows the answer to a question is $$90$$%. If he gets the correct answer to a question, then the probability that he was guessing is
    Solution
    We define the following events
    $${ A }_{ 1 }:$$ He knows the answer
    $${ A }_{ 2 }:$$ He does not know the answer
    $$E:$$ He gets the correct answer
    Thus $$\displaystyle P\left( { A }_{ 1 } \right) =\frac { 9 }{ 10 } ,P\left( { A }_{ 2 } \right) =1-\frac { 9 }{ 10 } =\frac { 1 }{ 10 } ,P\left( \frac { E }{ { A }_{ 1 } }  \right) =1,P\left( \frac { E }{ { A }_{ 2 } }  \right) =\frac { 1 }{ 4 } $$
    $$\therefore$$ required probability $$\displaystyle =P\left( \frac { { A }_{ 2 } }{ E }  \right) =\frac { P\left( { A }_{ 2 } \right) P\left( \frac { E }{ { A }_{ 2 } }  \right)  }{ P\left( { A }_{ 1 } \right) P\left( \frac { E }{ { A }_{ 1 } }  \right) +P\left( { A }_{ 2 } \right) P\left( \frac { E }{ { A }_{ 2 } }  \right)  } $$
    $$\displaystyle =\frac { \dfrac { 1 }{ 10 } .\dfrac { 1 }{ 4 }  }{ \dfrac { 9 }{ 10 } .1+\dfrac { 1 }{ 10 } .\dfrac { 1 }{ 4 }  } =\frac { 1 }{ 36+1 } =\frac { 1 }{ 37 } $$
  • Question 4
    1 / -0
    An artillery target may be either at point $$I$$ with probability $$\cfrac{8}{9}$$ or at point $$II$$ with probability $$\cfrac{1}{9}$$. We have $$21$$ shells each of which can be fired at point $$I$$ or $$II$$. Each shell may hit the target independently of the other shell with probability $$\cfrac{1}{2}$$. How many shells must be fired at point $$I$$ to hit the target with maximum probability?
    Solution
    Let $$A$$ denote the event that the target is hit when $$x$$ shells are fired at point $$I$$.
    Let $${ E }_{ 1 }$$ and $${ E }_{ 2 }$$ denote the events hitting $$I$$ and $$II$$, respectively
    $$\displaystyle \therefore P\left( { E }_{ 1 } \right) =\frac { 8 }{ 9 } ,P\left( { E }_{ 2 } \right) =\frac { 1 }{ 9 } $$
    Now $$\displaystyle P\left( \frac { A }{ { E }_{ 1 } }  \right) =1-{ \left( \frac { 1 }{ 2 }  \right)  }^{ x }$$ and $$\displaystyle P\left( \frac { A }{ { E }_{ 2 } }  \right) =1-{ \left( \frac { 1 }{ 2 }  \right)  }^{ 21-x }$$
    Hence $$\displaystyle P\left( A \right) =\frac { 8 }{ 9 } \left[ 1-{ \left( \frac { 1 }{ 2 }  \right)  }^{ x } \right] +\frac { 1 }{ 9 } \left[ 1-{ \left( \frac { 1 }{ 2 }  \right)  }^{ 21-x } \right] $$
    $$\displaystyle \therefore \frac { dP\left( A \right)  }{ dx } =\frac { 8 }{ 9 } \left[ { \left( \frac { 1 }{ 2 }  \right)  }^{ x }\log { 2 }  \right] +\frac { 1 }{ 9 } \left[ -{ \left( \frac { 1 }{ 2 }  \right)  }^{ 21-x }\log { 2 }  \right] $$
    For maximum probability $$\displaystyle \frac { dP\left( A \right)  }{ dx } =0$$
    $$\therefore x=12$$   $$\left[ \because { 2 }^{ 3-x }={ 2 }^{ x-21 }\Rightarrow 3-x=x-21 \right] $$
    Since $$\displaystyle \frac { { d }^{ 2 }P\left( A \right)  }{ dx^{ 2 } } <0$$ for $$x=12$$
    $$\therefore P\left( A \right) $$ is maximum for $$x=12$$
  • Question 5
    1 / -0
    A bag $$A$$ contains $$2$$ white and $$3$$ red balls, and a bag $$B$$ contains $$4$$ white and $$5$$ red balls. One ball is drawn at random from one of the bags and it is found to be red. Find the the probability that it was drawn from the bag $$B$$.
    Solution
    The event of selecting a red ball is denoted by 'R'.
    The event of selecting the bag A is denoted by 'A'.
    The event of selecting the bag B is denoted by 'B'.

    Bag-A has $$2$$ white and $$3$$ red balls
    Bag-B has $$4$$ white and $$5$$ red balls

    $$P(A)=P(B)=\dfrac 12, P\left( \dfrac { R }{ A }  \right)=\dfrac 35, P\left( \dfrac { R }{ B }  \right)=\dfrac 59$$

    From Bayes' theorem,we get

    $$P\left( \dfrac { B }{ R }  \right) =\dfrac { P\left( \dfrac { R }{ B }  \right) P(B) }{ P(R) } =\dfrac { P\left( \dfrac { R }{ B }  \right) P(B) }{ P\left( \dfrac { R }{ A }  \right) P(A)+P\left( \dfrac { R }{ B }  \right) P(B) } =\dfrac { \left( \dfrac { 5 }{ 9 }  \right) \left( \dfrac { 1 }{ 2 }  \right)  }{ \left( \dfrac { 3 }{ 5 }  \right) \left( \dfrac { 1 }{ 2 }  \right) +\left( \dfrac { 5 }{ 9 }  \right) \left( \dfrac { 1 }{ 2 }  \right)  } =\dfrac { 25 }{ 52 } $$
  • Question 6
    1 / -0
    In a bolt factory, machines $$A,B$$ and $$C$$ manufacture $$25$$%, $$35$$%, $$40$$% respectively. Of the total of their output $$5$$%,$$4$$% and $$2$$% are defective. A bolt is drawn and is found to be defective. What are the probabilities that it was manufactured by the machines $$A,B,C$$.
    Solution
    $$P(A)=0.25$$
    $$P(B)=0.35$$
    $$P(C)=0.40$$
    Hence
    Applying baye's theorem, we get to find the possibility that the  bolt was manufactured by A is
    $$=\dfrac{0.25\times 0.05}{(0.25(0.05))+(0.35(0.04))+(0.4(0.02) )}$$

    $$=\dfrac{0.0125}{0.0345}$$

    $$=\dfrac{25}{69}$$
    Similarly 
    Applying baye's theorem, we get to find the possibility that the  bolt was manufactured by B is 
    $$=\dfrac{0.35\times 0.04}{(0.25(0.05))+(0.35(0.04))+(0.4(0.02) )}$$
    $$=\dfrac{0.014}{0.0345}$$

    $$=\dfrac{28}{69}$$
    Applying baye's theorem, we get to find the possibility that the  bolt was manufactured by C is 
    $$=\dfrac{0.4\times 0.02}{(0.25(0.05))+(0.35(0.04))+(0.4(0.02) )}$$
    $$=\dfrac{0.008}{0.0345}$$

    $$=\dfrac{16}{69}$$
  • Question 7
    1 / -0
    A bag contains some white and some black balls, all combinations of ball being equally likely. The total number of balls in the bag is 10. If three balls are drawn at random without replacement and all of them are found to be black, the probability that the bag contains 1 white and 9 black balls is
    Solution

  • Question 8
    1 / -0

    Directions For Questions

    There are $$n$$ students in a class and probability that exactly $$\lambda$$ out of $$n$$ pass the examination is directly proportional to $${ \lambda  }^{ 2 } (0\le \lambda \le n)$$.

    ...view full instructions

    If a selected student has been found to pass the examination then find out the probability that he is the only student to have passed the examination.
    Solution
    Let $${ E }_{ \lambda  }$$ be the event that exactly $$\lambda $$ out of n pass the examination and 
    $$A$$ is the event that a student pass the examination
    $$P\left( { E }_{ \lambda  } \right) \propto { \lambda  }^{ 2 }\Rightarrow P\left( { E }_{ \lambda  } \right) ={ k\lambda  }^{ 2 }$$ (k os proportionality constant)
    $$\therefore { E }_{ 0 },{ E }_{ 1 },{ E }_{ 2 },...{ E }_{ n }$$ are mutually exclusive and exhaustive events.
    $$\Rightarrow P\left( { E }_{ 0 } \right) +P\left( { E }_{ 1 } \right) +P\left( { E }_{ 2 } \right) +...P\left( { E }_{ n } \right) =1\\ \Rightarrow 0+k{ \left( 1 \right)  }^{ 2 }+k{ \left( 2 \right)  }^{ 2 }+...+k{ \left( n \right)  }^{ 2 }=1\Rightarrow k\left( { 1 }^{ 2 }+{ 2 }^{ 2 }+{ 3 }^{ 2 }+...{ n }^{ 2 } \right) =1$$
    $$\displaystyle \Rightarrow \frac { kn\left( n+1 \right) \left( 2n+1 \right)  }{ 6 } =1\Rightarrow k=\frac { 6 }{ n\left( n+1 \right) \left( 2n+1 \right)  } $$
    $$\displaystyle \\ P\left( A \right) =\sum _{ r=1 }^{ n }{ P\left( { E }_{ \lambda  } \right)  } P\left( \frac { A }{ { E }_{ \lambda  } }  \right) =\sum _{ r=1 }^{ n }{ k{ \lambda  }^{ 2 } } \times \frac { \lambda  }{ n } =\frac { k }{ n } \sum _{ r=1 }^{ n }{ { \lambda  }^{ 3 } } $$
    $$\displaystyle =\frac { k }{ n } { \left[ \frac { n\left( n+1 \right)  }{ 2 }  \right]  }^{ 2 }=\frac { 6 }{ { n }^{ 2 }\left( n+1 \right) \left( 2n+1 \right)  } .\frac { { n }^{ 2 }{ \left( n+1 \right)  }^{ 2 } }{ 4 } =\frac { 3\left( n+1 \right)  }{ 2\left( 2n+1 \right)  } $$
    $$\displaystyle P\left( \frac { { E }_{ 1 } }{ A }  \right) =\frac { P\left( { E }_{ 1 } \right) P\left( \frac { A }{ { E }_{ 1 } }  \right)  }{ P\left( A \right)  } =\frac { \frac { 6 }{ n\left( n+1 \right) \left( 2n+1 \right)  } \times \frac { 1 }{ n }  }{ \frac { 3\left( n+1 \right)  }{ 2\left( 2n+1 \right)  }  } =\frac { 4 }{ { \left[ n\left( n+1 \right)  \right]  }^{ 2 } } $$
  • Question 9
    1 / -0
    In a test an examinee either guesses or copies or knows the answer to a multiple choice question with  $$4$$ choices. The probability that he makes a guess is $$\dfrac{1}{3}$$ and the probability that he copies the answer is $$\dfrac{1}{6}$$. The probability that his answer is correct given that he copied it, is $$\dfrac{1}{8}$$. Find the probability that he knew the answer to the question given that he correctly answered it.
    Solution
    Let $${ E }_{ 1 },{ E }_{ 2 },{ E }_{ 3 }$$ and $$A$$ be the events defined as:
    $${ E }_{ 1 }\rightarrow $$ The examine guesses the answer.
    $${ E }_{ 2 }\rightarrow $$ The examine copies the answer
    $${ E }_{ 3 }\rightarrow $$ The examine knows the answer.
    $$A\rightarrow $$ The examine answer correctly
    We have, $$\displaystyle P\left( { E }_{ 1 } \right) =\frac { 1 }{ 3 } ,P\left( { E }_{ 2 } \right) =\frac { 1 }{ 6 } $$
    Since, $${ E }_{ 1, }{ E }_{ 2 },{ E }_{ 3 }$$ are mutually exclusive and exhaustive events.
    $$\displaystyle \therefore P\left( { E }_{ 1 } \right) +P\left( { E }_{ 2 } \right) +P\left( E_{ 3 } \right) =1\Rightarrow P\left( { E }_{ 3 } \right) =1-\frac { 1 }{ 3 } -\frac { 1 }{ 6 } =\frac { 1 }{ 2 } $$
    If $${ E }_{ 1 }$$ has already occurred, then the examine gusses. Since, there are four choices out of which only one is correct, therefore the probability that he answer correctly given that he has made a guess is $$\displaystyle \frac { 1 }{ 4 } $$

    i.e $$\displaystyle P\left( \frac { A }{ { E }_{ 1 } } \right) =\frac { 1 }{ 4 } $$

    It is given that $$\displaystyle P\left( \frac { A }{ { E }_{ 2 } } \right) =\frac { 1 }{ 8 } $$

    and $$\displaystyle P\left( \frac { A }{ { E }_{ 3 } } \right) =$$ Probability that he answer correctly given that he knows the answer =$$1$$

    By Baye's theorem, we have

    $$\displaystyle P\left( \frac { { E }_{ 3 } }{ A } \right) =\frac { P\left( { E }_{ 3 } \right) P\left( \frac { A }{ { E }_{ 3 } } \right) }{ \left[ P\left( { E }_{ 1 } \right) .P\left( \frac { A }{ { E }_{ 1 } } \right) +P\left( { E }_{ 2 } \right) .P\left( \frac { A }{ { E }_{ 2 } } \right) +P\left( { E }_{ 3 } \right) .P\left( \frac { A }{ { E }_{ 3 } } \right) \right] } $$

    $$\displaystyle \therefore P\left( \frac { { E }_{ 3 } }{ A } \right) =\frac { \frac { 1 }{ 2 } \times 1 }{ \left( \frac { 1 }{ 3 } \times \frac { 1 }{ 4 } \right) +\left( \frac { 1 }{ 6 } \times \frac { 1 }{ 8 } \right) +\left( \frac { 1 }{ 2 } \times 1 \right) } =\frac { 24 }{ 29 } $$
  • Question 10
    1 / -0
    Die $$A$$ has $$4$$ red and $$2$$ white faces where as die $$B$$ has two red and $$4$$ white faces. $$A$$ fair coin is tossed. If head turns up, the game continues by throwing die $$A$$, if tail turns up then die $$B$$ is to be used. If the first two throws resulted in red, what is the probability of getting red face at the third throw ?
    Solution
    Let $$E_{1}$$ be the event that die $$A$$ is used and $$E_{2}$$ be the event that die $$B$$ is used

    Let $$C$$ be the event that a red face appears in any throw.
    $$ P(E_{1}) = \displaystyle\frac{1}{2} = P(E_{2})$$

    $$ P(C/E_{1}) = \displaystyle\frac{^{4}C_{1}}{^{6}C_{1}} = \displaystyle\frac{2}{3}$$, 

    $$P(C/E_{2}) =  \displaystyle\frac{^{2}C_{1}}{^{6}C_{1}} = \displaystyle\frac{1}{3}$$

    $$\displaystyle P(C) = P(E_{1}) P (C/E_{1}) + P(E_{2}). P(C/E_{2}) = 1/2 \times 2/3 + 1/2 \times 1/3  = 1/2$$

    Let $$ D$$ be the event that red face appears in third throw
    Let $$E$$ be the even that red face appears in first two throws
    $$ P(E_{1}) = P(E_{2}) = \displaystyle\frac{1}{2}$$

    $$ P(E/E1) = \displaystyle\frac{2}{3}.\displaystyle\frac{2}{3} =\left(\displaystyle\frac{2}{3}\right)^{2}$$, 

    $$P(D/EE_{1}) = \displaystyle\frac{2}{3}$$

    $$ P(E/E2) = \displaystyle\frac{1}{3} \times \displaystyle\frac{1}{3} =\left(\displaystyle\frac{1}{3}\right)^{2}$$

    $$ P(D/EE_{2}) = \displaystyle\frac{1}{3}$$

    $$ P(D/E) = \displaystyle\frac{P(E_{1} ) P(E/E_{1} )P(D/EE_{1} ) + P(E_{2} ).P(E/E_{2} )P(D/EE_{2} )}{P(E_{1} ).P(E/E_{1} ) + P(E_{2} ).P(E/E_{2} )}$$

    $$= \displaystyle\frac{1/2(2/3)^{2} \times 2/3 + 1/2(1/3)^{2} \times 1/3}{1/2 \times (2/3)^{2} + 1/2 \times (1/3)^{2}} = \displaystyle\frac{3}{5}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now