Let, $${ E }_{ 1 }$$ be the event noted number is $$7$$.
$${ E }_{ 2 }$$ be the event noted number is $$8$$.
$$H$$ be getting head on coin.
$$T$$ be getting tail on coin.
Therefore By law of total probability, $$\displaystyle P\left( { E }_{ 1 } \right) =P\left( H \right) .P\left( \frac { { { E }_{ 1 } } }{ H } \right) +P\left( T \right) P\left( \frac { { E }_{ 1 } }{ T } \right) $$
and $$\displaystyle P\left( { E }_{ 2 } \right) =P\left( H \right) .P\left( \frac { { E }_{ 2 } }{ H } \right) +P\left( T \right) .P\left( \frac { { E }_{ 2 } }{ T } \right) $$
where $$\displaystyle P\left( H \right) =\frac { 1 }{ 2 } =P\left( T \right) $$
$$\displaystyle P\left( \frac { { E }_{ 1 } }{ H } \right) =$$ Probability of getting a sum of $$7$$ on two dice.
Here, favorable cases are $$\left\{ \left( 1,6 \right) \left( 6,1 \right) ,\left( 2,5 \right) ,\left( 5,2 \right) ,\left( 3,4 \right) ,\left( 4,3 \right) \right\} $$.
$$\displaystyle \therefore P\left( \frac { { E }_{ 1 } }{ H } \right) =\frac { 6 }{ 36 } =\frac { 1 }{ 6 } $$
Also, $$\displaystyle P\left( \frac { { E }_{ 1 } }{ T } \right) =$$ Probability of getting $$7$$ numbered card out of $$11$$ cards $$\displaystyle =\frac { 1 }{ 11 } $$.
$$\displaystyle P\left( \frac { { E }_{ 2 } }{ H } \right) =$$ Probability of getting a sum of $$8$$ on two dice, here favorable cases are $$\left\{ \left( 2,6 \right) ,\left( 6,2 \right) ,\left( 4,4 \right) ,\left( 5,3 \right) ,\left( 3,5 \right) \right\} $$
$$\displaystyle \therefore P\left( \frac { { E }_{ 2 } }{ H } \right) =\frac { 5 }{ 36 } $$
$$\displaystyle P\left( \frac { { E }_{ 2 } }{ T } \right) =$$ Probability of getting $$8$$ numbered card out of $$11$$ cards $$\displaystyle =\frac { 1 }{ 11 } $$
$$\displaystyle \therefore P\left( { E }_{ 1 } \right) =\left( \frac { 1 }{ 2 } \times \frac { 1 }{ 6 } \right) +\left( \frac { 1 }{ 2 } \times \frac { 1 }{ 11 } \right) =\frac { 1 }{ 12 } +\frac { 1 }{ 22 } =\frac { 17 }{ 132 } $$
and $$\displaystyle P\left( { E }_{ 2 } \right) =\left( \frac { 1 }{ 2 } \times \frac { 5 }{ 36 } \right) +\left( \frac { 1 }{ 2 } \times \frac { 1 }{ 11 } \right) =\frac { 1 }{ 2 } \left[ \frac { 91 }{ 396 } \right] =\frac { 91 }{ 729 } $$
Now $${ E }_{ 1 }$$ and $${ E }_{ 2 }$$ are mutually exclusive events. Therefore, $$\displaystyle P\left( { E }_{ 1 }or{ E }_{ 2 } \right) =P\left( { E }_{ 1 } \right) +P\left( { E }_{ 2 } \right) =\frac { 17 }{ 132 } +\frac { 91 }{ 792 } =\frac { 193 }{ 792 } $$