Self Studies

Probability Test 7

Result Self Studies

Probability Test 7
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    An arrangement is selected at random from all possible arrangements of five digits written from the digits $$0,1,2,3,\cdots 9$$ with repetition. The probability that the randomly selected arrangement will have largest number $$'8'$$ given that the smallest number is $$'4'$$ is :
  • Question 2
    1 / -0
    Result of each experiment is called 
    Solution
    C is correct
  • Question 3
    1 / -0
    Cards are dealt one by one from a well shuffled pack until an ace appears. the probability that exactly n cards are dealt befor  the first ace appears is
    Solution
    A: number of ace is drawn in the first n draw
    B: an ace appear in the $${ \left( n+1 \right)  }^{ th }$$ draw
    Hence the probability that exactly n cards are dealt before the first ace appear is equal to $$P\left( A\cap B \right) $$
    $$\displaystyle P\left( A \right) =\frac { ^{ 48 }{ { C }_{ n } } }{ ^{ 52 }{ { C }_{ n } } } ,P\left( \frac { B }{ A }  \right) =\frac { 4 }{ 52-n } $$
    $$\displaystyle \therefore P\left( A\cap B \right) =P\left( A \right) .P\left( \frac { B }{ A }  \right) =\frac { ^{ 48 }{ { C }_{ n } } }{ ^{ 52 }{ { C }_{ n } } } .\frac { 4 }{ 52-n } $$
    $$\displaystyle =\frac { 48! }{ \left( 48-n \right) !n! } \times \frac { \left( 52-n \right) !n! }{ 52! } \times \frac { 4 }{ 52-n } $$
    $$\displaystyle =\frac { 4\left( 51-n \right) \left( 50-n \right) \left( 49-n \right)  }{ 52\times 51\times 50\times 49 } $$
  • Question 4
    1 / -0
    There are two balls in an urn whose colors are not known ( ball can be either white or black). A white ball is put into the urn. A ball is then drawn from the urn. The probability that it is white is 
    Solution
    Let $$\displaystyle { E }_{ i }\left( 0\le i\le 2 \right) $$ denotes the event that urn contains $$i$$ white and $$2-i$$ black balls.
    Let $$A$$ denotes the event that a white ball is drawn from the urn.
    We have $$\displaystyle P\left( { E }_{ i } \right) =\frac { 1 }{ 3 } $$ for $$i=0,1,2$$ and $$\displaystyle P\left( \frac { A }{ { E }_{ i } }  \right) =\frac { 1 }{ 3 } ,P\left( \frac { A }{ { E }_{ 2 } }  \right) =\frac { 2 }{ 3 } ,P\left( \frac { A }{ { E }_{ 3 } }  \right) =1$$
    By the total probability rule,
    $$\displaystyle P\left( A \right) =P\left( { E }_{ 1 } \right) P\left( \frac { A }{ { E }_{ 1 } }  \right) +P\left( { E }_{ 2 } \right) P\left( \frac { A }{ { E }_{ 2 } }  \right) +P\left( { E }_{ 3 } \right) P\left( \frac { A }{ { E }_{ 3 } }  \right) $$
    $$\displaystyle =\frac { 1 }{ 3 } \left[ \frac { 1 }{ 3 } +\frac { 2 }{ 3 } +1 \right] =\frac { 2 }{ 3 } $$
  • Question 5
    1 / -0
    A man is know to speak the truth $$3$$ out of $$4$$ times. He throws a die and reports that it is a six. the probability that it is actually a six is
    Solution

    $${\textbf{Step 1: Consider all the possible events.}}$$

                   $${\text{Let }}{E_1},{E_2}{\text{ and }}A{\text{ be the following events}}{\text{.}}$$

                   $${E_1} = {\text{six occurs}}$$

                   $$\therefore P\left( {{E_1}} \right) = \dfrac{1}{6}$$

                   $${E_2} = {\text{six does not occurs}}$$

                   $$\therefore P\left( {{E_1}} \right) = \dfrac{5}{6}$$

                   $$A = {\text{Man reports that it is a six}}$$

                   $${\text{Now, probability that the man reports that there is a six on the die is }}P\left( {A/{E_1}} \right)$$

                   $$P\left( {A/{E_1}} \right) = \dfrac{3}{4}$$   $$\left( {{\textbf{Given}}} \right)$$

                   $${\text{So, probability that the man reports that there is a six on the die }}$$ 

                   $${\text{given that six has not ocured on the die }}P\left( {A/{E_2}} \right)$$

                   $$ = {\text{ probability that man does not speak the truth}}$$

                   $$ = 1 - \dfrac{3}{4}$$

                   $$P\left( {A/{E_2}} \right) = \dfrac{1}{4}$$

    $${\textbf{Step 2: Find the probability that it is actually a six.}}$$

                   $${\text{The probability of the man speaking truth given the die shows the value 6, }}$$  

                   $${\text{which is }}P{\text{ }}\left( {{E_1}|A} \right){\text{ which is given by, using Bayes theorem:}}$$

                   $$ \Rightarrow P({E_1}|{\text{ }}A) = \dfrac{{P(A|{\text{ }}{E_1})P({E_1})}}{{P(A|{\text{ }}{E_2})P({E_2}) + P(A|{\text{ }}{E_1})P({E_1})}}$$         

                   $$\left(\mathbf {{\text{By Bayes theorem: }}P(A|{\text{ }}B) = \dfrac{{P(B|{\text{ }}A)P(A)}}{{P(B)}}} \right)$$

                   $$ \Rightarrow P({E_1}|{\text{ A}}) = \dfrac{{\dfrac{1}{6} \times \dfrac{3}{4}}}{{\dfrac{1}{6} \times \dfrac{3}{4} + \dfrac{5}{6} \times \dfrac{1}{4}}}$$

                   $$ \Rightarrow P({E_1}|{\text{ A}}) = \dfrac{{\dfrac{1}{8}}}{{\dfrac{1}{8} + \dfrac{5}{{24}}}}$$

                   $$ \Rightarrow P({E_1}|{\text{ A}}) = \dfrac{{\dfrac{1}{8}}}{{\dfrac{{3 + 5}}{{24}}}}$$

                   $$ \Rightarrow P({E_1}|{\text{ A}}) = \dfrac{{1 \times 24}}{{8 \times 8}}$$

                   $$ \Rightarrow P({E_1}|{\text{ A}}) = \dfrac{3}{8}$$

                   $${\text{The probability that it is actually a six is}}$$ $$ \dfrac{3}{8}.$$

    $${\textbf{Hence. option A}}{\textbf{. is the correct answer.}}$$

  • Question 6
    1 / -0
    The chances of defective screws in three boxes A, B and C are $$\dfrac {1}{5}, \dfrac {1}{6}, \dfrac {1}{7}$$ respectively. A box is selected at random and a screw drawn from it at random, is found to be defective. The probability that it came from the box 'A' is
    Solution
    using Baye's Law,
    $$ P(E_A|A)= \dfrac{ _{  }^{ 3 }{  C}_{1} \times \dfrac{ 1 }{ 5 }}{_{  }^{ 3 }{  C}_{1} \times \dfrac{1}{5} +_{  }^{ 3 }{  C}_{1} \times \dfrac{1}{6} + _{  }^{ 3 }{  C}_{1} \times \dfrac{1}{7}}= \dfrac{42}{107}$$

  • Question 7
    1 / -0
    A letter is known to have come either from $$TATANAGAR$$ or $$CALCUTTA$$. On the envelope just two consecutive letters $$TA$$ are visible. What is the probability that the letter came from $$CALCUTTA$$?
    Solution
    Let $${ E }_{ 1 } $$ denote the event that the letter came from $$TATANAGAR$$ and $${ E }_{ 2 } $$ the event that the letter came from $$CALCUTTA.$$ 
    Let $$A$$ denote the event that the two consecutive alphabets visible on the envelope are $$TA.$$
    We have $$ \displaystyle P\left( { E }_{ 1 } \right) =\frac { 1 }{ 2 } ,P\left( { E }_{ 2 } \right) =\frac { 1 }{ 2 } ,\displaystyle P\left( \frac { A }{ { E }_{ 1 } }  \right) =\frac { 2 }{ 8 } ,P\left( \frac { A }{ { E }_{ 2 } }  \right) =\frac { 1 }{ 7 } , $$
    Therefore, by Bayes' theorem we have 
    $$ \displaystyle \left( \frac { { E }_{ 2 } }{ A }  \right) =\dfrac { P\left( { E }_{ 2 } \right) P\left( \dfrac { A }{ { E }_{ 2 } }  \right)  }{ P\left( { E }_{ 1 } \right) P\left( \dfrac { A }{ { E }_{ 1 } }  \right) +P\left( { E }_{ 2 } \right) P\left( \dfrac { A }{ { E }_{ 1 } }  \right)  } =\frac { 4 }{ 11 }  $$ 
  • Question 8
    1 / -0
    Three groups $$A,\ B,\ C$$ are contesting for positions on the Board of Directors of a company. The probabilities of their winning are $$0.5,\ 0.3, 0.2$$ respectively. If the group $$A$$ wins, the probability of introducing a new product is $$0.7$$ and the corresponding probabilities for groups $$B$$ and $$C$$ are $$0.6$$ and $$0.5$$ respectively. The probability that the new product will be introduced is given by
    Solution
    $$P\left( A \right) =0.5,P\left( B \right) =0.3,P\left( C \right) =0.2$$

    If $$N$$ is for introducing new product, then

    $$P\left( N|A \right) =0.7,P\left( N|B \right) =0.6,P\left( N|C \right) =0.5$$

    Therefore,

    $$P\left( N \right) =P\left( A \right) \times P\left( N|A \right) +P\left( B \right) \times P\left( N|B \right) +P\left( C \right) \times P\left( N|C \right) \\ =0.5\times 0.7+0.3\times 0.6+0.2\times 0.5=0.63$$
  • Question 9
    1 / -0
    A letter is known to have come either from $$TATANAGAR$$ or $$CALCUTTA$$. On the envelope just two consecutive letters $$TA$$ are visible. What is the probability that the letter came from $$TATANAGAR$$?
    Solution
    Let $${ E }_{ 1 }$$ denote the event that the letter from $$TATANAGAR$$ and $${ E }_{ 2 }$$ the event that the letter come from $$CALCUTTA$$.
    Let $$A$$ denote the vent that the two consecutive alphabets visible on the envelop are $$TA$$
    We have $$\displaystyle P\left( { E }_{ 1 } \right) =\frac { 1 }{ 2 } ,P\left( { E }_{ 2 } \right) =\frac { 1 }{ 2 } ,P\left( \frac { A }{ { E }_{ 1 } }  \right) =\frac { 2 }{ 8 } ,P\left( \frac { A }{ { E }_{ 2 } }  \right) =\frac { 1 }{ 7 } $$
    Therefore by Bayes's theorem we have
    $$\displaystyle P\left( \frac { { E }_{ 1 } }{ A }  \right) =\frac { P\left( { E }_{ 1 } \right) .P\left( \frac { A }{ { E }_{ 1 } }  \right)  }{ P\left( { E }_{ 1 } \right) .P\left( \frac { A }{ { E }_{ 1 } }  \right) +P\left( { E }_{ 2 } \right) .P\left( \frac { A }{ { E }_{ 2 } }  \right)  } =\frac { 7 }{ 11 } $$
  • Question 10
    1 / -0
    The chance that Doctor A will diagonise disease X correctly is $$60\%$$. The chance that a patient will die by his treatment after correct diagnosis is $$40\%$$ and the chance of death after wrong diagnosis is $$70\%.$$ A patient of Doctor A who had disease X died. The probability that his disease was diagonised correctly is
    Solution
    Let us define the following events.
    $${ E }_{ 1 }:$$ Disease $$X$$ is diagnosed correctly by doctor $$A$$.
    $${ E }_{ 2 }:$$ Disease $$X$$ is not diagnosed correctly by doctor $$A$$.
    $$B:$$ A patient (of doctor $$A$$) who has disease $$X$$ dies.
    Then, we are given, $$P({ E }_{ 1 })=0.6$$,$$P({ E }_{ 2 })=1-P({ E }_{ 1 })=1-0.6=0.4$$
    and $$\displaystyle P\left( \frac { B }{ { E }_{ 1 } }  \right) =0.4$$, $$\displaystyle P\left( \frac { B }{ { E }_{ 2 } }  \right) =0.7$$
    By Bay's Theorem
    $$\displaystyle P\left( \frac { { E }_{ 1 } }{ B }  \right) =\frac { P\left( { E }_{ 1 } \right) P\left( \frac { B }{ { E }_{ 1 } }  \right)  }{ P\left( { E }_{ 1 } \right) P\left( \frac { B }{ { E }_{ 1 } }  \right) +P\left( { E }_{ 2 } \right) P\left( \frac { B }{ { E }_{ 2 } }  \right)  } $$
    $$\displaystyle=P\left( \frac { { E }_{ 1 } }{ B }  \right) =\frac { 0.6\times 0.4 }{ 0.6\times 0.4+0.4\times 0.7 } =\frac { 0.24 }{ 0.24+0.28 } =\frac { 0.24 }{ 0.52 } =\frac { 6 }{ 13 } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now