$${\textbf{Step 1: Consider all the possible
events.}}$$
$${\text{Let
}}{E_1},{E_2}{\text{ and }}A{\text{ be the following events}}{\text{.}}$$
$${E_1} = {\text{six occurs}}$$
$$\therefore P\left( {{E_1}}
\right) = \dfrac{1}{6}$$
$${E_2} = {\text{six does
not occurs}}$$
$$\therefore P\left( {{E_1}}
\right) = \dfrac{5}{6}$$
$$A = {\text{Man reports
that it is a six}}$$
$${\text{Now, probability
that the man reports that there is a six on the die is }}P\left( {A/{E_1}}
\right)$$
$$P\left( {A/{E_1}} \right)
= \dfrac{3}{4}$$ $$\left(
{{\textbf{Given}}} \right)$$
$${\text{So, probability
that the man reports that there is a six on the die }}$$
$${\text{given that six has not ocured on the die
}}P\left( {A/{E_2}} \right)$$
$$ = {\text{ probability
that man does not speak the truth}}$$
$$ = 1 - \dfrac{3}{4}$$
$$P\left( {A/{E_2}} \right)
= \dfrac{1}{4}$$
$${\textbf{Step 2: Find the probability that it is actually
a six.}}$$
$${\text{The probability of
the man speaking truth given the die shows the value 6, }}$$
$${\text{which is }}P{\text{ }}\left( {{E_1}|A}
\right){\text{ which is given by, using Bayes theorem:}}$$
$$ \Rightarrow
P({E_1}|{\text{ }}A) = \dfrac{{P(A|{\text{ }}{E_1})P({E_1})}}{{P(A|{\text{
}}{E_2})P({E_2}) + P(A|{\text{ }}{E_1})P({E_1})}}$$
$$\left(\mathbf {{\text{By Bayes theorem: }}P(A|{\text{ }}B)
= \dfrac{{P(B|{\text{ }}A)P(A)}}{{P(B)}}} \right)$$
$$ \Rightarrow P({E_1}|{\text{
A}}) = \dfrac{{\dfrac{1}{6} \times \dfrac{3}{4}}}{{\dfrac{1}{6} \times \dfrac{3}{4}
+ \dfrac{5}{6} \times \dfrac{1}{4}}}$$
$$ \Rightarrow
P({E_1}|{\text{ A}}) = \dfrac{{\dfrac{1}{8}}}{{\dfrac{1}{8} + \dfrac{5}{{24}}}}$$
$$ \Rightarrow
P({E_1}|{\text{ A}}) = \dfrac{{\dfrac{1}{8}}}{{\dfrac{{3 + 5}}{{24}}}}$$
$$ \Rightarrow
P({E_1}|{\text{ A}}) = \dfrac{{1 \times 24}}{{8 \times 8}}$$
$$ \Rightarrow
P({E_1}|{\text{ A}}) = \dfrac{3}{8}$$
$${\text{The probability that it is actually a six is}}$$ $$ \dfrac{3}{8}.$$
$${\textbf{Hence. option A}}{\textbf{. is the correct answer.}}$$