Self Studies

Functions Test ...

TIME LEFT -
  • Question 1
    1 / -0

    The domain of $$f(x)=\displaystyle \frac{1}{[x]-x}$$ is

  • Question 2
    1 / -0

    lf $${f}\left({x}\right)=\sin^{2}{x}+\sin^{2}\left({x}+\displaystyle \dfrac{\pi}{3}\right)+ \cos x \cos \left({x}+\displaystyle \dfrac{\pi}{3}\right)$$ and $${g}\left(\displaystyle\dfrac{5}{4}\right)=1$$, $$g\left(1\right) = 0 $$ then $$\left({g}{o}{f}\right)\left({x}\right)=$$

  • Question 3
    1 / -0

    If $$ f : R \rightarrow R$$ is defined by $$f(x)=2x-2,$$  then $$(f\circ f) (x) + 2 =$$

  • Question 4
    1 / -0

    If $$f(x) =\displaystyle \frac{x}{\sqrt{1-x^2}}, g(x)=\frac{x}{\sqrt{1+x^2}}$$ then $$(f\circ g)(x) =$$

  • Question 5
    1 / -0

    If $$f(x)=\log  x,  g(x) = x^3$$ then $$f[g(a)]+f[g(b)]= $$

  • Question 6
    1 / -0

    If $$f:R \rightarrow R$$ and $$g : R \rightarrow R$$ are defined by $$f(x)=2x+3$$ and $$g(x)=x^2+7$$, then the values of $$x$$ such that $$g(f(x)) =8$$ are:

  • Question 7
    1 / -0

    If $$f : R \rightarrow R$$ and $$g :R \rightarrow R$$ are defined by $$f(x) = x -[x]$$ and $$g(x) = [x]$$ for $$x \in R$$, where $$[x]$$ is the greatest integer not exceeding $$x$$, then for every $$x \in R, f(g(x)) =$$

  • Question 8
    1 / -0

    If $$y=f(x) = \dfrac{2x-1}{x-2}$$, then $$f(y)=$$

  • Question 9
    1 / -0

    Find the domain of $$ e^x$$.

  • Question 10
    1 / -0

    A mapping function $$f:X\rightarrow Y$$ is one-one, if

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now