Self Studies

Functions Test 11

Result Self Studies

Functions Test 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the domain of $$x$$ if  $$f(x)=\sqrt {x^2-|x|-2}$$
    Solution
    Case I $$x<0$$
    Hence $$f(x)=\sqrt{x^2-(-x)-2}$$
    $$=\sqrt{x^2+x-2}$$
    $$=\sqrt{(x+2)(x-1)}$$
    Therefore the domain will be $$(-\infty,-2]$$....$$(D_{1})$$
    Case II $$x>0$$
    Hence $$f(x)=\sqrt{x^2-(x)-2}$$
    $$=\sqrt{x^2-x-2}$$
    $$=\sqrt{(x-2)(x+1)}$$
    Therefore the domain will be $$[2,\infty)$$....$$(D_{2})$$
    Hence the domain of the function $$f(x)$$ from $$D_{1}$$ and $$ D_{2}$$ will be
    $$=(-\infty,-2]\cup[2,\infty)$$
  • Question 2
    1 / -0
    Find the domain of $$x^2+2$$
    Solution
    The function is a polynomial function. Hence its domain includes all real numbers which includes the set of all integers, Z and the set of all natural numbers, N. So correct option is D.
  • Question 3
    1 / -0
    The domain for, $$f(x)=\cos^{-1}[x]$$ is
    Solution
    As, $$y=\cos^{-1}$$ $$x$$ exists when $$-1 \leq x \leq 1$$.
    $$\therefore f(x)=\cos^{-1} [x]$$ exists, when $$-1\leq [x]\leq 1$$
    $$\Rightarrow -1\leq x < 2$$ or $$x\in [-1, 2)$$
  • Question 4
    1 / -0
    The domain of the function $$\displaystyle f(x)=[\sin x] \cos\left ( \frac {\pi}{[x-1]} \right )$$ is
    Solution
    Given $$\displaystyle f(x)=[\sin x] \cos\left ( \frac {\pi}{[x-1]} \right )$$

    $$[\sin x]$$ is always defined 

    $$\cos \left ( \dfrac {\pi}{[x-1]} \right )$$ is also defined except when $$[x-1]=0$$

    $$\Rightarrow 0\leq x-1 < 1$$
    $$\Rightarrow 1 \leq x < 2$$
    Hence, domain $$\in R-[1, 2)$$.
  • Question 5
    1 / -0
    If $$f(x) = \dfrac{2x+5}{x^{2} + x + 5}$$, then $$f\left [ f(- 1 ) \right ]$$ is equal to
    Solution
    Given expression is $$ f(x)=\dfrac { 2x+5 }{ { x }^{ 2 }+x+5 } $$
    $$ \therefore  f(-1)=\dfrac { 2\times (-1)+5 }{ (-1)^{ 2 }+(-1)+5 } =\dfrac { 3 }{ 5 } $$
    $$ \therefore  f\left( f\left( -1 \right)  \right) =\dfrac { 2\times \dfrac { 3 }{ 5 } +5 }{ \left( \dfrac { 3 }{ 5 }  \right) ^{ 2 }+\dfrac { 3 }{ 5 } +5 } =\dfrac { 155 }{ 149 }$$
  • Question 6
    1 / -0
    Which one of the following relation is a function
    Solution
    As in option C every element in the domain has a unique image.
  • Question 7
    1 / -0
    If $$f$$ and $$g$$ are one-one functions from $$R\to R$$, then
    Solution
    Let $${x_1},{x_2} \in R$$ be two distinct elements, then $$g\left( {{x_1}} \right) \ne g\left( {{x_2}} \right)$$, as $$g$$ is one-one function. Similarly $$f\left( {g\left( {{x_1}} \right)} \right) \ne f\left( {g\left( {{x_2}} \right)} \right)$$ as $$f$$ is also one-one function. 
    Hence, $$f\circ g$$ is one-one function.
    Note that $$f+g$$ and $$f\cdot g$$ may not one-one functions even if $$f$$ and $$g$$ are one one. For example consider $$f\left( x \right) = x$$ and $$g\left( x \right) =- x$$, then  $$f+g$$ and $$f\cdot g$$  are not one-one.
  • Question 8
    1 / -0
    Which of the following functions are one-one?
    Solution
    For all even powered function,
    $$f(x_{1})=f(x_{2})$$ where $$x_{1}=\pm(x_{2})$$
    Hence, the only possible one-one function is $$f(x)=x^3+4$$
    $$f(x)$$ is a strictly increasing function. So, it is one-one.
  • Question 9
    1 / -0
    The domain of the function $$\displaystyle f(x)=\sqrt{x^{2}-[x]^{2}},$$ where $$[x]=$$ the greatest integer less than or equal to $$x$$, is
    Solution
    If $$x \ge 0$$, then $$\left[x\right]$$ is an integer part of $$x$$. 

    Hence $${x^2} \ge {\left[ x \right]^2}$$ and $$\displaystyle f\left( x \right) = \sqrt {{x^2} - {{\left[ x \right]}^2}}$$ is well-defined.

    If $$x < 0$$ say $$x=-a$$ where $$a$$ is a positive number, 
    then $$\displaystyle \left[ x \right] =- \left( {\left[ a \right] + 1} \right)$$. 

    Hence,   $${x^2} < {\left[ x \right]^2}$$ and the function $$\displaystyle f\left( x \right) = \sqrt {{x^2} - {{\left[ x \right]}^2}}$$ is not defined.

    Therefore the domain of the function is $$\left[ {0,\infty } \right)$$.
  • Question 10
    1 / -0
    If $$f:R\rightarrow R$$ given by $$f(x)={ x }^{ 3 }+({ a+2)x }^{ 2 }+3ax+5$$ is one-one, then $$a$$ belongs to the interval
    Solution
    If $$ f(x) $$ is one one then $$ f'\left( x \right) $$ should be either positive or negative for all $$ x $$.
    $$f'\left( x \right) = 3{ x }^{ 2 }+2(a+2)x+3a$$
    $$\Rightarrow D = 4{ (a+2) }^{ 2 }-4\times3\times3a<0$$
    $$\Rightarrow$$ $${ a }^{ 2 }-5a+4<0$$
    $$\Rightarrow$$ $$(a-1)(a-4)<0$$
    Hence, $$a\in \left( 1,4 \right) $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now