Self Studies

Functions Test 15

Result Self Studies

Functions Test 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle f\left ( x \right )= \log \left | 4-x^{2} \right |$$ then domain of $$x$$ is
    Solution
    Here $$\displaystyle f\left ( x \right )$$ is defined for $$|4-x^2| > 0$$

    Clearly $$|4-x^2| $$ is greater than zero for every real $$x$$ except at $$x=\pm 2$$
  • Question 2
    1 / -0
    The domain of $$\displaystyle \frac{1}{\log _{10}\left ( 1-x \right )}+\sqrt{\left ( x+2 \right )}$$ is
    Solution
    $$f(x) = \displaystyle \frac{1}{\log _{10}\left ( 1-x \right )}+\sqrt{\left ( x+2 \right )}$$ 

    For this function to be defined, $$(1-x) > 0,\neq 1$$ and $$(x+2) \geq 0$$

    $$\Rightarrow x < 1, \neq 0 $$ and $$x\geq -2$$

    Thus domain of $$f(x)$$ is $$ x\in [-2,0) \cup (0,1)$$
  • Question 3
    1 / -0
    $$\displaystyle f\left ( x \right )=\dfrac1{\left ( \left | x \right |-x \right )^{1/2}}$$. Then the domain of the function is
    Solution
    For real values of $$y$$,

    $$|x|-x>0$$ and $$|x|-x\neq 0$$

    For $$x>0$$

    $$|x|-x=x-x$$

    $$=0$$

    Thus for all $$x>0$$, $$|x|-x=0$$.

    For $$x<0$$

    $$|x|-x$$$$=-x-x$$$$=-2x$$

    Since $$x<0$$

    $$-2x>0$$

    Thus domain of $$f(x)$$ is
    $$x<0$$.
  • Question 4
    1 / -0
    The domain of $$\displaystyle f\left ( x \right )= \sqrt{\log \left ( \dfrac{ 5x-x^{2}}6 \right )}$$ is
    Solution
    The function is defined for all values of x for which $$\displaystyle \frac{5x-x^{2}}{6}> 0$$ ...(1) 

    and $$\displaystyle \log \left [ \dfrac{\left( 5x-x^{2} \right )}6 \right ]\geq 0= \log 1$$ ...(2)

    (1)$$\displaystyle \Rightarrow x\left ( 5-x \right )> 0$$ or $$x\left ( x-5 \right )< 0$$ ...(3)

    (2)$$\displaystyle \Rightarrow \dfrac{\left ( 5x-x^{2} \right )}6\geq 1i.e. x^{2}-5x+6\leq 0$$ ...(4) or

    $$\displaystyle x\left ( x-5 \right )< 0$$ and $$\displaystyle \left ( x-2 \right
    )\left ( x-3 \right )\leq 0$$ 

    $$\displaystyle \therefore D_{1}= \left [
    0, 5 \right ], D_{2}= \left [ 2, 3 \right ]$$ 

    Hence the inequalities (1)

    and (2) will hold for $$\displaystyle D_{1}\cap D_{2} i.e.$$ if
    $$\displaystyle 2\leq x \leq 3$$ or $$\left [ 2,3 \right ]$$

     (Draw $$\displaystyle D_{1}$$ and $$D_{2}$$ on real line and take the common part of both.)
  • Question 5
    1 / -0
    Determine domain of $$\displaystyle \frac{\sqrt{4-x^{2}}}{\sin ^{-1}\left ( 2-x \right )}$$
    Solution
    $$f(x)=\dfrac{\sqrt{4-x^{2}}}{sin^{-1}(2-x)}$$
    The function gives an undefined $$(\dfrac{0}{0})$$ as x approaches 2.
    Therefore
    $$limit_{x\rightarrow 2} f(x)$$

    $$=limit_{x\rightarrow 2} \dfrac{\sqrt{4-x^{2}}}{sin^{-1}(2-x)}$$

    $$=limit_{x\rightarrow2}\dfrac{\sqrt{4-x^{2}}}{2-x(\dfrac{sin^{-1}(2-x)}{2-x})}$$

    $$=limit_{x\rightarrow2}\dfrac{\sqrt{2+x}}{\sqrt{2-x}\dfrac{sin^{-1}(2-x)}{2-x}}$$

    $$=\dfrac{\sqrt{4}}{0\times 1}$$

    $$=\infty$$...(i)
    Hence as $$x\rightarrow 0$$, $$y\rightarrow \infty$$.

    Also, for real values of f(x)

    $$4-x^{2}\geq0$$

    $$x^{2}\leq 4$$
    $$|x|\leq 2$$
    $$-2\leq x\leq 2$$...(ii)
    And
    $$\dfrac{-\pi}{2}\leq sin^{-1}(2-x)\leq \dfrac{\pi}{2}$$

    $$-1\leq 2-x\leq 1$$

    Therefore
    $$2-x\leq 1$$
    $$x\geq1$$

    And

    $$-1\leq 2-x$$
    $$x\leq 3$$



    $$x\epsilon [1,3]$$...(iii)
    From i, ii, and iii

    The domain of x is
    $$x\epsilon [1,2]$$


  • Question 6
    1 / -0
    The domain of $$\displaystyle \log \left [ 1-\log _{10}\left ( x^{2}-5x+16 \right ) \right ]$$ is
    Solution
    Let $$f(x) = \displaystyle \log \left [ 1-\log _{10}\left ( x^{2}-5x+16 \right ) \right ]$$

    For $$f$$ to be defined, we must have $$\displaystyle x^{2}-5x+16> 0$$ which is true as

    $$\displaystyle \Delta = $$ -ive and the sign of first term is +ive. Again by definition of $$\displaystyle \log x$$ we must have

    $$\displaystyle 1-\log _{10}\left ( x^{2}-5x+16 \right )> 0$$

    $$\Rightarrow \displaystyle \log _{10}\left ( x^{2}-5x+16 \right )< 1= \log _{10}10$$

    $$\Rightarrow \displaystyle

    x^{2}-5x+16< 10 $$

    or $$\displaystyle

    x^{2}-5x+6< 0$$ or $$\Rightarrow \displaystyle \left ( x-2 \right )\left ( x-3

    \right )< 0$$

    or $$\displaystyle 2< x< 3$$ 

    $$\therefore x \in \left ( 2, 3 \right )$$
  • Question 7
    1 / -0
    If $$\displaystyle f\left ( x \right )=\frac{ax+b}{cx+d}$$ and $$\displaystyle \left ( fof \right )x=x,$$ then d=?
    Solution
    $$\displaystyle \left ( fof \right )x=x\Rightarrow f\left [ f\left ( x \right ) \right ]=x$$ or $$\displaystyle  f\left [ \frac{ax+b}{cx+d} \right ]=x$$ or $$\displaystyle\frac{a\left [ \frac{ax+b}{cx+d}\right ]+b}{c\left [\frac{ax+b}{cx+d} \right ]+d}=x$$ $$\displaystyle  \therefore \frac{x\left ( a^{2}+bc \right )+b\left ( a+d \right )}{cx\left ( a+d \right )+\left ( bc+d^{2} \right )}=x$$ Clearly if $$\displaystyle  a+d=0$$ or $$\displaystyle  d=-a$$ then in that case $$\displaystyle  L.H.S.=\frac{x\left ( a^{2}+bc \right )+0}{0+\left ( bc+a^{2} \right )}=x$$ $$\displaystyle \because d=-a$$
  • Question 8
    1 / -0
    The domain of the function $$\displaystyle \sqrt{\left \{ \frac{\log _{0.3}\left | x-2 \right |}{\left | x \right |} \right \}}$$ is
    Solution
    The given function is defined if $$\displaystyle x\neq 0, x\neq 2$$ and

    $$\displaystyle \log _{0.3}\left | x-2 \right |> 0$$ 

    Now $$\displaystyle

    \log _{0.3}\left | x-2 \right |> 0$$

    $$\displaystyle

    \Rightarrow \left | x-2 \right |< 1$$ , as the base $$0.3$$ is less than $$1$$, the inequality is reversed.

    $$\displaystyle \therefore -1\leq x-2\leq 1$$

    $$\displaystyle 1\leq x\leq 3.$$

    Out of the above, we have to exclude $$0$$ and $$2$$. 

    Hence the domain is $$\displaystyle 1\leq x\leq 3$$ but

    $$\displaystyle x\neq 0, x\neq 2$$ or $$\displaystyle x \in \left [

    \left ( 1, 2 \right )\cup \left ( 2, 3 \right ) \right ]$$
  • Question 9
    1 / -0
    The total number of injective mappings from a set with $$m$$ elements to a set with $$n$$ elements,$$\displaystyle m\leq n,$$ is
    Solution
    Let $$A=\{a_1,a_2, a_3.....a_m\}$$
    and $$B=\{b_1,b_2, b_3.....b_n\}$$ where $$m \le n$$
    Given $$f:A\rightarrow B$$ be an injective mapping.
    So, for $$a_1 \in A$$, there are $$n$$ possible choices for $$f(a_1)\in B$$.
    For $$a_2 \in A$$, there are $$(n-1)$$ possible choices for $$f(a_2)\in B$$. 
    Similarly for $$a_m \in A$$, there are $$(n-m-1)$$ choices for $$f(a_m)\in B$$
    So, there are $$n(n-1)(n-2).....(n-m-1)=\dfrac{n!}{(n-m)!}$$ injective mapping from $$A$$ to $$B.$$

  • Question 10
    1 / -0
    Are the following sets of ordered pairs functions? If so, examine whether the mapping is surjective or injective :
    {(x, y): x is a person, y is the mother of x}
    Solution
    We have {(x, y) : x is a person, y is the mother of x}. Clearly each person 'x' has only one biological mother. So above set of ordered pair is a function. Now more than one person may have same mother. So function is many-one and surjective. 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now