Self Studies

Functions Test 16

Result Self Studies

Functions Test 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Given $$\displaystyle f\left ( x \right )=\log \left ( \frac{1+x}{1-x} \right )$$ and $$\displaystyle g\left ( x \right )=\frac{3x+x^{3}}{1+3x^{2}}, fog (x)$$ equals
    Solution
    Given $$f(x)\, =\, \log\, \left( \displaystyle \dfrac{1\, +\, x}{1\, -\,

    x} \right)$$ and $$g(x)\, =\, \displaystyle \dfrac{3x\, +\, x^{3}}{1\,

    +\, 3x^{2}}$$

    $$\therefore fog (x)\, =\, \log \left( \displaystyle \dfrac{1\, +\, \dfrac{3x\, +\,

    x^{3}}{1\, +\, 3x^{2}}}{1\, -\,\displaystyle \dfrac{3x\, +\, x^{3}}{1\,

    +\, 3x^{2}}} \right)$$

    $$=\, \log\, \left(\displaystyle \dfrac{(1\, +\,

    x)^{3}}{(1\, -\, x)^{3}} \right)\, =\, 3\, \log\, \left(\displaystyle

    \dfrac{1\, +\, x}{1\, -\, x} \right)\, =\, 3\, f(x)$$
  • Question 2
    1 / -0
    The domain of definition of the function $$\log \cos x$$ is
    Solution
    For given function to be defined $$\displaystyle \cos x$$ must be +ive and $$\displaystyle \cos x\neq 0,

    i.e. x\neq \dfrac{\pi}2$$ or $$\displaystyle -\dfrac{\pi}2.$$

    Also we know that $$\displaystyle \cos x$$ is +ive in 1st and 4th quadrants.

    $$\displaystyle \therefore $$ Domain $$\displaystyle = \left

    \{ x;2n\pi -\dfrac{\pi}2< x< 2n\pi +\dfrac{\pi}2 \right \}, n \epsilon I.$$
  • Question 3
    1 / -0
    A function $$R$$ on the set $$N$$ of natural numbers is defined as $$\displaystyle R= \left \{ \left ( 2n,2n+1 \right ):n \epsilon N \right \}$$ The domain of $$R$$ is
    Solution
    Given function is $$\displaystyle R= \left \{ \left ( 2n,2n+1 \right ):n \epsilon N \right \}$$

    Domain of $$R=2n$$   where   $$n\epsilon N$$

    $$\Rightarrow$$ Domain $$=\displaystyle \left \{ 2,4,6,8,.... \right \}$$

    Hence, option B.
  • Question 4
    1 / -0
    If $$\displaystyle y= \sin ^{-1}\frac{x-1}{x+1}+\log \left ( 2-x \right )$$, then its domain is:
    Solution
    $$\displaystyle y= \sin ^{-1}\frac{x-1}{x+1}+\log \left ( 2-x \right )$$
    For this function to be defined $$\displaystyle -1\leq \frac{x-1}{x+1}\leq 1  \mbox{and}  2-x > 0$$
    $$\Rightarrow \displaystyle \frac{x-1}{x+1} \leq 1, \frac{x-1}{x+1} > -1  \mbox{and}  x-2 <0 0$$
    $$\Rightarrow \displaystyle \frac{-2}{x+1} \leq 0, \frac{2x}{x+1} > 0  \mbox{and}  x<2 $$
    $$\Rightarrow \displaystyle x> -1, x\in (-\infty,-1)\cup (0,\infty),  \mbox{and}  x< 2$$
    Thus taking intersection of above range of $$y$$ is $$x \in (0,2)$$
  • Question 5
    1 / -0
    If $$\displaystyle A= \left \{ x:-1\leq x\leq 1 \right \}=B.$$ Discuss the following function w.r.t one-one onto bijective and write their characteristics.
    $$\displaystyle f\left ( x \right )=\frac{x}{2}$$
    Solution
    $$f(x)=\dfrac{x}{2}$$

    $$f(x_{1})=f(x_{2})$$

    Implies
    $$\dfrac{x_{1}}{2}=\dfrac{x_{2}}{2}$$

    Or
    $$x_{1}=x_{2}$$
    Hence
    $$f(x_{1})=f(x_{2})$$ implies $$x_{1}=x_{2}$$
    Hence $$f(x)$$ is a one one function.
    Now
    $$y=\dfrac{x}{2}$$
    Or
    $$2y=x$$
    For $$x\epsilon R$$, $$y\epsilon R$$.
    Hence
    $$f:R\rightarrow R$$.
    Thus there exists atleast one value of x for an element 'y' in the co domain Y.
    That is , all the elements in the co domain are mapped by the function.
    Hence the function is onto.
    Purely linear (straight line ) functions are always one-one and onto.
  • Question 6
    1 / -0
    If $$\left[ \log _{ 10 }{ x }  \right] =1$$, then $$x$$ lies in which of the following interval
    (Here $$[. ]$$ is the greatest integer less than or equal to the number.)
    Solution
    $$\quad \left[ \log _{ 10 }{ x }  \right] =1$$

    $$\Rightarrow \quad 1\le \log _{ 10 }{ x } <2\quad$$

    $$ \Rightarrow \quad 10\le x<100$$

    Therefore, $$x\in [10,100)$$

    Ans: A
  • Question 7
    1 / -0
    If $$f:R\rightarrow R$$ and $$g:R\rightarrow R$$ are functions defined by $$f(x)=3x-1; g(x)=\sqrt{x+6}$$, then the value of $$(g\circ f^{-1})(2009)$$ is 
    Solution
    Given $$f(x)=3x-1, g(x)=\sqrt{x+6}$$
    Let $$f(x)=y$$
    $$ \Rightarrow y=3x-1\Rightarrow y+1-3x\Rightarrow x=\cfrac{y+1}{3}$$
    Now, $$ f^{-1}(y)=x=\cfrac{y+1}{3}$$
    $$\Rightarrow f^{-1}(x)=\cfrac{x+1}{3}$$ and $$g(x)=\sqrt {x+6}$$
    Consider, $$(g\circ f^{-1})(2009)=g[{f^{-1}(2009)}]$$
    $$ =g\left(\cfrac{2009+1}{3}\right)=g\left(\cfrac{2010}{3}\right)$$
    $$=\sqrt{\cfrac{2010}{3}+6}=\sqrt{\cfrac{2028}{3}}=\sqrt{676}=26$$
    Hence, option $$A$$ is correct.
  • Question 8
    1 / -0
    If $$\displaystyle y= 2^{-x}+\cos ^{-1}\left ( \frac{x}{2}-1 \right )+\log \sqrt{x-\left [ x \right ]},$$then its domain is given by
    Solution
    Given function is, $$\displaystyle y= 2^{-x}+\cos ^{-1}\left ( \frac{x}{2}-1 \right )+\log \sqrt{x-\left [ x \right ]}$$

    For this function to be defined $$\displaystyle -1\leq \frac{x}{2}-1\leq 1   \,\,{and}\,\,    x-[x] > 0$$ 

    $$\displaystyle 0 \leq \frac{x}{2}\leq 2 \,\,  {and}  \,\,  x-[x] > 0 $$ 

    this is always true except at integral values of $$x$$

    $$\Rightarrow x \in \left(0,4\right)-\{1,2,3\}$$
  • Question 9
    1 / -0
    Let $$f(x)=x^{2}-2x$$ and $$g(x)=f(f(x)-1)+f(5-f(x)),$$ then
    Solution
    Given, $$ f(x) = x^2 - 2x $$
    Now, $$ f(f(x) - 1) \\ = f(x^2 - 2x - 1 ) \\ = (x^2 - 2x - 1 )^2 - 2 (x^2 - 2x - 1 ) $$
    And, $$ f(5 - f(x) ) \\ = f(5 - x^2 + 2x ) \\ = (5 - x^2 + 2x )^2 - 2 (5 - x^2 + 2x ) $$
    Hence, $$ g(x) = f(f(x) - 1) + f (5 - f(x)) \\ \therefore g(x) = (x^2 - 2x - 1)^2 - 2 (x^2 - 2x -1 ) + (5 - x^2 + 2x )^2 - 2(5 - x^2 + 2x ) \\ \Rightarrow g(x) = (x^2 - 2x - 1)^2 + (5- x^2 + 2x)^2 - 2(x^2 - 2x - 1 + 5 - x^2 + 2x) \\ \therefore g(x) = (x^2 + 2x - 1 )^2 + ( 5 - 2x ^2 + 2 x^2)^2 - 8$$
    Since the first two terms are in square,
    $$\therefore $$ it can not be negative and if x = 9 then we also get positive value.
    $$\therefore g(x) \geq 0 \, \,  \forall x \in R $$
    $$ \therefore $$ option D is correct 
  • Question 10
    1 / -0
    The domain of the function $$f(x)\, =\, \displaystyle \frac{1}{\log_{10}(1\, -\, x)}\, +\, \sqrt{x\, +\, 2}$$, is 
    Solution
    Given,
    $$f(x)\, =\, \displaystyle \frac{1}{\log_{10}(1\, -\, x)}\, +\, \sqrt{x\, +\, 2}$$

    $$f(x)$$ will be defined if, $$1-x> 0,\neq 1$$ and $$x+2\geq 0$$

    Or $$x< 1, \neq 0$$ and $$x\geq -2$$

    Combining  these conditions we get, $$x\in [-2,0)\cup (0,1)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now