Self Studies

Functions Test 17

Result Self Studies

Functions Test 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$g(x)=1+\sqrt { x } $$ and $$f(g(x))=3+2\sqrt { x } +x$$, then $$f(x)=$$
    Solution
    We have $$g\left( x \right)=1+\sqrt { x } $$ and $$f(g(x))=3+2\sqrt { x } +x$$   ...(1)

    Also, $$f\left( g\left( x \right) \right) =f\left( 1+\sqrt { x }  \right) $$   ...(2)

    From (1) and (2), we get

    $$f\left( 1+\sqrt { x }  \right) =3+2\sqrt { x } +x$$

    Let $$1+\sqrt { x } =y\Rightarrow x={ \left( y-1 \right)  }^{ 2 }$$

    $$\therefore f\left( y \right) =3+2\left( y-1 \right) +{ \left( y-1 \right)  }^{ 2 }\\ =3+3y-2+{ y }^{ 2 }-2y+1=2+{ y }^{ 2 }\\ \therefore f\left( x \right) =2+{ x }^{ 2 }$$
  • Question 2
    1 / -0
    Let $$f:R\rightarrow R$$ be a function defined by $$f(x)=\left\{ \left|\cos x\right|\right\},$$ where $$\left\{x\right\}$$ represents fractional part of $$x$$. Let $$ S$$ be the set containing all real values $$x$$ lying in the interval $$[0,2\pi]$$ for which $$f(x)\neq \left|\cos x\right|.$$ Then, number of elements in the set $$ S$$ is
    Solution

    $$f(x)\neq \left | \cos x \right |$$ is true only when

    Function inside the fractional part must be an integer.

    $$\cos x$$ has a maximum integer value $$=1$$

    $$\left | \cos x \right |=1$$

    As the interval is $$[0,2\pi]$$

    $$\Rightarrow  x=0, \:\pi , \:2\pi $$

    So, the number of elements $$=3$$
  • Question 3
    1 / -0
    If $$f(x)$$ is defined in $$[-3,3]$$ then find the domain of definition of $$f(|2x+3|)$$
    Solution
    For the required domain, $$-3 \leq 2x+3 \leq 3$$

    Case 1. $$2x+3 \geq -3 \Rightarrow 2x+3 \geq -3 \Rightarrow x \geq -3$$

    Case 2. $$2x+3 \leq 3 \Rightarrow 2x+3 \leq 3 \Rightarrow x \leq 0$$

    Hence required domain is $$[-3, 0]$$
  • Question 4
    1 / -0
    The domain of the function $$ f(x)=\cos^{-1}(\sec (\cos^{-1}x))+\sin ^{-1}(\ \text {cosec} (\sin ^{-1}x))$$is
    Solution
    $$\displaystyle f(x)=\cos^{-1}(\sec (\cos^{-1}x))+\sin^{-1}(cosec (\sin^{-1}x))$$

    $$\Rightarrow -1\leq \sec (\cos^{-1}x)\leq 1$$

    And $$-1\leq \text{cosec} (\sin^{-1}x)\leq 1$$

    $$\Rightarrow \sec (\cos^{-1}x)=\pm 1$$

    $$\Rightarrow \displaystyle \cos^{-1}x=0, \pi $$ and $$\displaystyle \sin^{-1}x=\frac{\pi }{2}, -\frac{\pi }{2}$$

    $$\Rightarrow x=\pm 1$$ and $$x=\pm 1$$

    $$\Rightarrow $$ Domain is $$x=\pm 1$$.
  • Question 5
    1 / -0
    If $$f_{0}(x)\, =\, \dfrac{x}{(x\, +\, 1)}$$ and $$f_{n\, +\, 1}\, =\, f_{0}\circ f_{n}(x)$$ for $$n = 0, 1, 2,\cdots$$ then $$f_{n}(x)$$ is
    Solution
    Given $$f_{0}\left(x\right)=\dfrac{x}{ \left(x\, +\, 1\right)}\cdots\cdots\left(1\right)$$

    Also given $$f_{n\, +\, 1}\, =\, f_{0}\, o\, f_{n}$$ for $$(n = 0, 1, 2,\cdots)\ldots\left(2\right)$$

    Put $$n=0$$ in eqn (2)

    $$f_1=f_{0} o f_0$$

    $$f_1\left(x\right)=f_{0}[f_{0}\left(x\right)]$$

    $$\Rightarrow f_{1}\left(x\right)=f_{0}\left(\dfrac{x}{x+1}\right)$$

    $$=\dfrac{\dfrac{x}{x+1}}{\dfrac{x}{x+1}+1}$$

    $$=\dfrac{x}{2x+1}$$

    $$\Rightarrow f_1\left(x\right)=\dfrac{x}{2x+1}$$

    Put $$n=1$$ in eqn $$(2)$$

    $$f_2=f_{0} o f_1$$

    $$f_2\left(x\right)=f_{0}[f_{1}\left(x\right)]$$

    $$\Rightarrow f_{2}\left(x\right)=f_{0}\left(\dfrac{x}{2x+1}\right)$$

    $$=\dfrac{\dfrac{x}{2x+1}}{\dfrac{x}{2x+1}+1}$$

    $$=\dfrac{x}{3x+1}$$

    $$\Rightarrow f_2\left(x\right)=\dfrac{x}{3x+1}$$

    Hence, $$f_n\left(x\right)=\dfrac{x}{\left(n+1\right)x+1}$$
  • Question 6
    1 / -0
    If the function $$f : R \rightarrow$$ A given  by $$f(x)\, =\, \displaystyle \frac{x^{2}}{x^{2}\, +\, 1}$$ is a surjection, then A is
    Solution
    As 'f' is surjective,
    Range of f = co-domain of 'f'
    $$\implies$$ A = range of 'f'
    Since, $$f(x)=\dfrac{x^2}{x^2+1}$$
    $$\implies$$ $$y=\dfrac{x^2}{x^2+1}$$
    $$\implies$$ $$y(x^2+1)=x^2$$
    $$\implies$$ $$(y-1)x^2+y=0$$
    $$\implies$$ $$x^2=\dfrac{-y}{y-1}$$
    $$\implies$$ $$x=\sqrt{\dfrac{y}{1-y}}$$
    $$\implies$$ $$\dfrac{y}{1-y} \geq 0$$
    $$\implies$$ $$y \epsilon [0,1)$$
    $$\implies$$ $$A=[0,1)$$
  • Question 7
    1 / -0
    If $$\displaystyle \log_{1/3} \frac{3x -1}{x + 2}$$ is less than unity then $$x $$ must lie in the interval 
    Solution
    $$\displaystyle\log _{ \frac { 1 }{ 3 }  }{ \left( \frac { 3x-1 }{ x+2 }  \right)  } =\log _{ 3 }{ \left( \frac { x+2 }{ 3x-1 }  \right)  } <1$$

    $$\displaystyle\Rightarrow \frac { x+2 }{ 3x-1 } >0$$ and $$\displaystyle\frac { x+2 }{ 3x-1 } <3$$

    $$\displaystyle \frac { x+2 }{ 3x-1 } >0$$

    $$\Rightarrow  x\in (-\infty,-2)\cup (1/3,\infty)$$ -----(1)

    $$\displaystyle\frac { x+2 }{ 3x-1 } <3$$

    $$\Rightarrow \displaystyle\frac{-8x+5}{3x-1}<0$$

    $$\Rightarrow \displaystyle\frac{8x-5}{3x-1}>0$$

    $$\therefore x\in (-\infty,1/3)\cup (5/8,\infty)$$ ------(2)

    From (1) and (2), we get

    $$x\in(-\infty, -2) \cup (5/8, \infty)$$

    Hence, option A.
  • Question 8
    1 / -0
    If $$f(x)=\begin{cases} 2x+3\quad \quad x\le 1 \\ a^{ 2 }x+1\quad x>1 \end{cases}$$, then the values of $$a$$ for which $$f(x)$$ is injective. 
    Solution
    A function is called injective (one-one) if it is monontonic.
    Clearly for $$x<1$$ f is increasing and it's maximum values is $$2(1)+3=5$$
    Hence for f to be monotonic $$(x>1)$$, $$f(1) \geq 5$$
    $$\Rightarrow a^2(1)+1\geq 5 \Rightarrow a^2\geq 2 \Rightarrow a\in R-(-2,2)$$
  • Question 9
    1 / -0
    The domain of the function $$f\left( x \right)=_{  }^{ 24-x }{ { C }_{ 3x-1 } }+_{  }^{ 40-6x }{ { C }_{ 8x-10 } }$$ is
    Solution
    $$_{  }^{ 24-x }{ { C }_{ 3x-1 } }$$ is defined if,

    $$24-x>0,3x-1\ge 0$$ and $$24-x \ge 3x-1$$

    $$\displaystyle \Rightarrow x<24,x\ge \frac { 1 }{ 3 } $$ and $$\displaystyle x\le \frac { 25 }{ 4 } \Rightarrow \frac { 1 }{ 3 } \le x\le \frac { 25 }{ 4 } $$   ...(1)

    $$^{ 40-6x }{ { C }_{ 8x-10 } }$$ is defined if

    $$40-6x>0,8x-10\ge 0$$ and $$40-6x\ge 8x-10$$

    $$\displaystyle x<\frac { 20 }{ 3 } ,x\ge \frac { 5 }{ 4 } $$ and $$\displaystyle x\le \frac { 25 }{ 7 } \Rightarrow \frac { 5 }{ 4 } \le x\le \frac { 25 }{ 7 } $$   ...(2)

    From (1) and (2), we get $$\displaystyle \frac { 5 }{ 4 } \le x\le \frac { 25 }{ 7 } $$

    But, $$24-x\in N$$

    $$\therefore x$$ must be an integer, 

    $$\therefore x=2,3.$$

    Hence domain of $$f(x)={2,3}$$
  • Question 10
    1 / -0
    The domain of $$f(x)\, =\,\sqrt{\displaystyle \frac{1\, -\,|\, x\, |}{2\, -\, |x|}}$$ is 
    Solution
    For given function to be defined, $$\displaystyle \frac{1-|x|}{2-|x|} \geq 0$$
    $$\Rightarrow \displaystyle \frac{|x|-1}{|x|-2} \geq 0$$
    $$\Rightarrow |x| \in (-\infty, 1] \cup (2, \infty)\Rightarrow |x| \in [0, 1] \cup (2, \infty)$$, Since $$|x| \geq 0$$
    $$\Rightarrow x \in  [-\, 1,\, 1]\, \cup\, (-\, \infty,\, -2)\, \cup\, (2\,, \infty)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now