Self Studies

Functions Test 27

Result Self Studies

Functions Test 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Consider the following statements :
    Statement 1 : The function $$f:R \rightarrow R$$ such that $$f(x)=x^3$$ for all $$x\in R$$ is one-one.
    Statement 2 : $$f(a) = f(b) \Rightarrow a=b$$ for all $$a, b \in R$$ if the function $$f$$ is one-one.
    Which one of the following is correct in respect of the above statements?
    Solution
    Solution:
    Statement $$1$$ is correct, since $$f(x)=x^3$$
    For any $$x,y\in R$$
    $$f(x)=f(y)$$
    $$\Rightarrow x^{3}=y^3$$
    $$\Rightarrow x=y$$
    $$\therefore\ f$$ is one-one $$\forall x\in R.$$
    $$\because f(a)=f(b)\Longrightarrow a^3=b^3\Longrightarrow a=b$$
    Statement $$2$$ is also correct and is the correct explanation of statement $$1.$$
    Hence, A is the correct option.
  • Question 2
    1 / -0
    If $$f(x) = 8x^3, g(x) = x^{1/3}$$, then fog (x) is
    Solution
    $$f\left( x \right) =8{ x }^{ 3 }$$

    $$g\left( x \right) ={ x }^{  { 1 }/{ 3 }  }$$

    $$fog\left( x \right) =f\left[ g\left( x \right)  \right] $$
    $$=f\left[ { x }^{  { 1 }/{ 3 }  } \right] $$

    $$=8{ \left[ { x }^{ { 1 }/{ 3 } } \right]  }^{ 3 }$$

    $$=8x$$
  • Question 3
    1 / -0
    If $$fog = |\sin x|$$ and $$gof = \sin^{2}\sqrt {x}$$, then $$f(x)$$ and $$g(x)$$ are
    Solution
    $$fog = f\left \{g(x)\right \} = |\sin x| = \sqrt {\sin^{2}x}$$

    Also, $$gof = g\left \{f(x)\right \} = \sin^{2}\sqrt {x}$$

    Obviously, $$\sqrt {\sin^{2}x} = \sqrt {g(x)}$$

    and $$\sin^{2} \sqrt {x} = \sin^{2} \left \{f(x)\right \}$$
    i.e., $$g (x) = \sin^{2}x$$

    and $$f(x) = \sqrt {x}$$.
  • Question 4
    1 / -0
    If $$g(x)=\dfrac{1}{f(x)}$$ and $$f(x)=x, x\ne 0,$$ then which one of the following is correct?
    Solution
    From the given data, it is evident that $$gof(x)=\dfrac{1}{x}=fog(x)$$
    $$f(f(f(g(g(f(x))))))=x$$ and $$g(g(f(g(f(x)))))=\dfrac{1}{x}$$
    $$f(g(f(g(g(f(g(x)))))))=x$$ and $$g(g(f(g(f(x)))))=\dfrac{1}{x}$$
    $$f(g(f(g(g(f(g(x)))))))=x$$ and $$f(g(f(g(f(x)))))=x$$
    $$f(f(f(g(g(f(x))))))=x$$ and $$f(f(f(g(f(x)))))=\dfrac{1}{x}$$
  • Question 5
    1 / -0
    Let $$f (x) = \sqrt {2 - x - x^2}$$ and g(x) = cos x. Which of the following statements are true?
    (I) Domain of $$f((g(x))^2) = $$ Domain of f(g(x))
    (II) Domain of f(g(x)) + g(f(x)) = Domain of g(f(x))
    (III) Domain of f(g(x)) = Domain of g(f(x))
    (IV) Domain of $$g((f(x))^3) = $$ Domain of f(g(x))
    Solution
    Domain of $$f(g(x))$$ is R
    $$\because f(g(x)) = 2- \cos x - \cos x^2 \geq 0$$
    $$\Rightarrow(\cos x + 2)(\cos x - 1) \leq 0$$
    $$\Rightarrow$$ $$-2$$ $$\leq$$ $$\cos x$$ $$\leq$$ $$1$$
    $$\therefore$$ x $$\in$$ R
    Domain of $$g(f(x))$$ is [$$-2$$, $$1$$]
    $$\because$$ In $$\cos \sqrt{2 - x - x^2}$$ 
    $$2 - x - x^2$$ $$\geq$$ $$0$$
    Domain of $$f((g(x))^2)$$ is R
    since $$2$$ - $$\cos^2 x$$ - $$\cos^4 x$$ $$\geq$$ $$0$$
    ($$\cos^2 x$$ + $$2$$)($$\cos^2 x$$ -$$1$$) $$\leq$$ $$0$$
    $$-1$$ $$\leq$$ $$\cos x$$ $$\leq$$ $$1$$
    $$\Rightarrow$$ x$$\in$$ R
    Domain of $$g((f(x))^3)$$ is same as Domain of $$g(f(x))$$
    i.e. [$$-2$$,$$1$$]
    From above discussion statement $$\textrm{I}$$ is true and statements $$\textrm{II, III}$$ and $$\textrm{IV}$$ are false.
  • Question 6
    1 / -0
    If $$g(x)=1+\sqrt{x}$$ and $$f\{g(x)\}=3+2\sqrt{x}+x$$, then $$f(x)$$ is equal to
    Solution
    Given, $$g(x)=1+\sqrt{x}$$
    and $$f\left \{ g(x) \right \}=3+2\sqrt{x}+x$$ ..... $$(i)$$
    $$\Rightarrow f(1+\sqrt{x})=3+2\sqrt{x}+x$$
    Put $$1+\sqrt{x}=y\Rightarrow x=(y-1)^2$$
    $$\therefore f(y)=3+2(y-1)+(y-1)^2=3+2y-2+y^{2}-2y+1=2+y^2$$
    $$\therefore f(x)=2+x^2$$
  • Question 7
    1 / -0
    If $$f:R\rightarrow R, g:R \rightarrow R$$ be two functions given by $$f(x)=2x-3$$ and $$g(x)=x^3+5$$, then $$(fog)^{-1}(x)$$ is equal to
    Solution
    Given,
    $$f(x)=2x-3$$ and $$g(x)=x^3+5$$
    Now, $$(fog)(x)=f(g(x))=2(x^3+5)-3$$
    $$=2x^3+10-3=2x^3+7$$
    Let, $$(fog)(x)=y,$$ then,
    $$y=2x^3+7$$
    $$\Longrightarrow x=\left(\cfrac{y-7}{2}\right)^{\cfrac 13}$$
    $$\therefore fog^{-1}(x)=\left(\cfrac{x-7}{2}\right)^{\cfrac 13}$$
    Hence, B is the correct option.
  • Question 8
    1 / -0
    The function $$f:A\rightarrow B$$ given by $$f(x) = x ,x\in A$$, is one to one but not onto. Then;
    Solution
    $$f(x)=x$$ is identity function
    It is given that $$f(x)$$ is one to one but not on to.
    It means some element in $$B$$ has no pre image in $$A$$
    $$A\subset B$$
  • Question 9
    1 / -0
    If $$f(x)=\sin ^{ 2 }{ x } +\sin ^{ 2 }{ \left( x+\cfrac { \pi  }{ 3 }  \right)  } +\cos { x } \cos { \left( x+\cfrac { \pi  }{ 3 }  \right)  } $$ and $$g\left( \cfrac { 5 }{ 4 }  \right) =1$$, then $$g\circ f(x)$$ is equal to
    Solution
    Given, $$f(x)=\sin ^{ 2 }{ x } +\sin ^{ 2 }{ \left( x+\cfrac { \pi  }{ 3 }  \right)  } +\cos { x } \cos { \left( x+\cfrac { \pi  }{ 3 }  \right)  } $$
    $$=\sin ^{ 2 }{ x } +\left( \sin { x } \cos { \cfrac { \pi  }{ 3 }  } +\cos { x } \sin { \cfrac { \pi  }{ 3 }  }  \right) +\cos { x } \left( \cos { \cfrac { \pi  }{ 3 }  } -\sin { x } \sin { \cfrac { \pi  }{ 3 }  }  \right) $$
    $$=\sin ^{ 2 }{ x } +\cfrac { \sin ^{ 2 }{ x }  }{ 4 } +\cfrac { 3\cos ^{ 2 }{ x }  }{ 4 } +\cfrac { 2\sqrt { 3 }  }{ 2.2 } \sin { x } \cos { x } +\cfrac { \cos ^{ 2 }{ x }  }{ 2 } -\cos { x } \sin { x } \cfrac { \sqrt { 3 }  }{ 2 } $$
    $$=\cfrac { 5 }{ 4 } \left( \sin ^{ 2 }{ x } +\cos ^{ 2 }{ x }  \right) =\cfrac { 5 }{ 4 } \quad $$
    Therefore, $$ g\circ f(x)=g(f(x))=g\left( \cfrac { 5 }{ 4 }  \right) =1\quad \quad $$
  • Question 10
    1 / -0
    If $$f(x)=ax+b $$ and $$g(x)=cx+d$$, then $$f\left( g(x) \right) =g\left( f(x) \right) \Leftrightarrow$$
    Solution
    We have $$f(x)=ax+b,g(x)=cx+d$$
    Therefore, $$ f\left\{ g(x) \right\} =g\left\{ f(x) \right\} \Leftrightarrow f(cx+d)=g(ax+b)$$
    $$\Leftrightarrow a(cx+d)+b=c(ax+b)+d$$
    $$\Leftrightarrow ad+b=cb+d\Leftrightarrow f(d)=g(b)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now