Self Studies

Functions Test 29

Result Self Studies

Functions Test 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f: R\rightarrow R$$ and $$g: R\rightarrow R$$ are defined $$f(x) = x - [x]$$ and $$g(x) = [x]\forall x\epsilon R, f(g(x))$$.
    Solution
    We have, $$f(x)=x-[x]=\{x\}\dots (1)$$

     where $$\{x\}$$ is the fractional part of $$x$$

    If $$g(x)=[x]$$, where $$[x]$$ is the greatest integer part of $$x$$, then 

    The value of $$g(x)$$ will always be an integer.

    And $$\therefore f(g(x))=f([x])=0$$

    $$\because $$ the fractional part of $$g(x)$$ i.e $$[x]$$ is always $$0$$.
  • Question 2
    1 / -0

    Directions For Questions

    Given a function $$f : A \rightarrow B$$; where $$A = \left \{1, 2, 3, 4, 5\right \}$$ and $$B = \left \{6, 7, 8\right \}$$.

    ...view full instructions

    Find number of all such function $$y = f(x)$$ which are onto?
    Solution
    1. For all possible functions from A to B

    2. $${ 3 }^{ 5 }= 243$$  (as each value in A can get matched to any one of the elements in B)

    Now we remove functions in which all match to one elements only.

    3. Number of such elements $$= 1 + 1 + 1= 3$$

    (One when all match to 6, one when all match to 7 and one when all match to 8)

    For functions in which 2 elements are only matched.

    4.  $$3[\binom {5} {1} + \binom {5} {2} + \binom {5} {3} + \binom {5} {4}]=90$$

    If we select any two numbers from $$6,7$$ and $$8.$$ Possible ways are $$3$$.

    Now we distribute these $$5$$ numbers from $$1$$ to $$5$$ in different possible ways between the two numbers. 

    This is done by  $$[\binom {5} {1} + \binom {5} {2} + \binom {5} {3} + \binom {5} {4}]$$.

    5. Hence the total onto functions are $$= 243 - ( 3 + 90 ) = 150$$

  • Question 3
    1 / -0
    On differentiating an identity function, we get?
    Solution
    Derivative of an Identity function gives a Constant function


    $$\dfrac{d(cx)}{dx} = c$$ 
    Where $$c$$ is a constant.
  • Question 4
    1 / -0
    Let $$f(x)={ x }^{ 3 }-3x+1$$. The number of different real solutions of $$f(f(x))=0$$
  • Question 5
    1 / -0
     If $$f:R\rightarrow R$$, $$g:R\rightarrow R$$ are defined by$$ f(x)=5x-3$$, $$g(x)=x^{2}+3$$, then $$(gof^{-1})(3)$$=
    Solution
    $$f:R\rightarrow R$$
    $$ g:R\longrightarrow R$$
    $$ f\left( x \right) =5x-3$$
    $$g\left( x \right) ={ x }^{ 2 }+3$$
    $$\left(gof^{-1}\right)\left(3\right)$$
    $$f\left(x\right)={5}{x}-{3}$$
    Let $$f\left(x\right)=y$$           $$\Rightarrow{x}=f^{-1}\left(y\right)$$
    $$f\left(x\right)=y={5}x-3$$
    $$\Rightarrow x=\dfrac{y+3}{5}$$
    $$\Rightarrow f^{-1}\left(y\right)=\dfrac{y+3}{5}$$
    $$ f^{-1}\left(x\right)=\dfrac{x+3}{5}$$  and    $$g\left(x\right)=x^{2}+{3}$$
    $$\left(gof^{-1}\right)\left(3\right)=g\left[f^{-1}\left(3\right)\right]=g\left(\dfrac{3+3}{5}\right)=g\left(\dfrac{6}{5}\right)$$
    $$=\left[\left(\dfrac{6}{5}\right)^{2}+3\right]=\dfrac{36}{25}+{3}=\dfrac{111}{25}$$
    Hence, $$\dfrac{111}{25}$$ is the correct answer.
  • Question 6
    1 / -0
    Let $$f(x)=\dfrac{[x]} {[x+2]}$$. Find the domain of $$f(x)$$
    Solution
    As from the definition of $$[x]$$ we get,
    $$[x]=\begin{cases}.\\.\\ -1 &\mbox{for}& -1\le x\lt 0 \\ 0 &\mbox{for}&\ 0\le x\lt 1\\ 1 &\mbox{for}& \ 1\le x\lt 2\\.\\.\end {cases}$$.
    Now the given function $$f(x)$$ will be defined for $$[x+2]\ne 0$$.
    And this occurs of $$x \in (-\infty,-2)\cup [-1,\infty)$$.
    So option (B) is correct.
  • Question 7
    1 / -0
    If $$f(x)$$ is a real valued function, then which of the following is one-one function?
    Solution
    $$(1)$$  $$f(x)=e^{|x|}$$
    Since$$f(x)=f(-x)$$
    So $$f(x)$$ is many one.

    $$(2)$$  $$f(x)=|e^{x}|$$
    so, $$f(x)=e^x$$
    and as $$e^x$$ is one-one
    So $$f(x)$$ is one-one.


    $$(3)$$  $$f(x)=\sin x$$
    Since $$\sin x$$ is many one
    So $$f(x)$$ is also many-one.

    $$(4)$$  $$f(x)=|\sin x|$$
    Since $$\sin x$$ is many one
    So $$f(x)$$ is also many-one.

  • Question 8
    1 / -0
    If $$A =\{1, 2, 3\}$$ and $$ B = \{4, 5\}$$ then the number of function $$f : A \rightarrow B$$ which is not onto is ______
    Solution
    Total number of function $$f:A\rightarrow B$$ is the number of relations from $$A$$ to $$B$$ such that all the elements of $$A$$ are in the first elements of function $$f$$.
    Hence, total number of functions are $$=2\times 2\times 2 =2^3=8$$
    There are two functions for which the function is $$\{(1,4),(2,4),(3,4)\}$$ and $$\{(1,5),(2,5),(3,5)\}$$.
    Hence there are two non-onto functions.


  • Question 9
    1 / -0
    If $$f\,: R \rightarrow R, g: R \rightarrow R\,$$ are defined by $$f(x)= 5x -3,g(x)=x^2 + 3$$, then, $$(gof^{-1})(3) =$$
    Solution
    $$f(x)=5x-3,$$ $$g(x)=x^2+3$$
    Let $$f(x)=y$$
    $$\Rightarrow$$  $$5x-3=y$$
    $$\Rightarrow$$  $$x=\dfrac{y+3}{5}$$       ----( 1 )
    Now,
     $$f(x)=y$$
    $$f^{-1}(y)=x$$
    $$f^{-1}(y)=\dfrac{y+3}{5}$$                   [ From ( 1 ) ]
    $$f^{-1}(x)=\dfrac{x+3}{5}$$
    Next, 
    $$(gof^{-1})(3)$$
    $$\Rightarrow$$  $$g[f^{-1}(3)]$$
    $$\Rightarrow$$  $$g\left[\dfrac{3+3}{5}\right]$$

    $$\Rightarrow$$  $$g\left[\dfrac{6}{5}\right]$$

    $$\Rightarrow$$  $$\left(\dfrac{6}{5}\right)^2+3$$           [ Since, $$g(x)=x^2+3$$ ]

    $$\Rightarrow$$  $$\dfrac{36}{25}+3$$

    $$\Rightarrow$$  $$\dfrac{36+75}{25}$$

    $$\Rightarrow$$  $$\dfrac{111}{25}$$

  • Question 10
    1 / -0
    If $$f:R\rightarrow R,f(x)=\begin{cases} 1\quad \quad x>0 \\ 0\quad \quad x=0 \\-1\quad x<0 \end{cases}$$ and $$g:R\rightarrow R,g(x)=\left[ x \right] $$, then $$\left( f\circ g \right) \left( \pi  \right)$$ is:
    Solution
    Given that $$g(x)=[x]$$

    $$\Rightarrow$$ $$g(\pi )=g(3.141....)$$

    i.e $$g(\pi )=3$$

    $$(f\circ g)(x)=f(g(x))$$

    $$\Rightarrow$$ $$(f\circ g)(\pi ))=f(g(\pi ))$$

    But $$g(\pi)=3$$

    $$\Rightarrow f(3)=1$$ ...... $$[\because f(x)=1 \text{ for } x>0]$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now