Self Studies
Selfstudy
Selfstudy

Functions Test 35

Result Self Studies

Functions Test 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Difference between the greatest and the least values of the function
    $$f(x) = x(ln x - 2)$$ on $$[1, e^{2}]$$ is
    Solution

  • Question 2
    1 / -0
    The function $$f :\left[-\dfrac{1}{2}, \dfrac{1}{2}\right]\rightarrow \left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]$$ defined by $$f(x)=\sin^{-1}(3x-4x^{3})$$ is 
    Solution
    $$f:[-\cfrac{1}{2},\cfrac{1}{2}]\rightarrow[-\cfrac{\pi}{2},\cfrac{\pi}{2}]\\f(x)=\sin^{-1}(3x-4x^3)$$
    Range of $$\sin^{-1}(3x-4x^3)$$ is $$[-\cfrac{\pi}{2},\cfrac{\pi}{2}]$$
    And $$-\cfrac{\pi}{2}\le\sin^{-1}(3x-4x^3)\le\cfrac{\pi}{2}$$
    $$\Rightarrow \sin(\cfrac{-\pi}{2})\le3x-4x^3\le\sin\cfrac{\pi}{2}$$
    $$\Rightarrow-1\le3x-4x^3\le1$$
    $$3x-4x^3\le-1$$
    $$\Rightarrow 4x^3-3x-1\le0$$
    $$\Rightarrow x\le\cfrac{1}{2}$$
    and$$3x-4x^3\le1\Rightarrow 4x^3-3x+1\le0\\ \Rightarrow x\le-\cfrac{1}{2}\\ \therefore x\epsilon [-\cfrac{1}{2},\cfrac{1}{2}]\\f{x}=\sin^{-1}(3x-4x^3)\\ \Rightarrow f^1(x)=\cfrac{1}{\sqrt{1-(3x-4x^3)^2}}\times(3-12x^2)\\ \Rightarrow f^1(x)=3-12x^2\\ \quad=-(12x^2-3)\\x^2\le0\Rightarrow 12x^2\le0\Rightarrow 12x^2-3\le-3\\-3(12x^2-3)\le3\\ \therefore f^1(x)\le0$$
    $$\therefore f^1(x)$$ is a decreasing function.
    Hence $$f(x)$$ is one-one and range of function $$=$$ its co-domain.
    Hence it is both one-one and onto.
  • Question 3
    1 / -0
    The value of the function f(x)=$$\dfrac { { x }^{ 2 }-3x+2 }{ { x }^{ 2 }+x-6 } $$ lies in the interval:
    Solution

  • Question 4
    1 / -0
    The domain of $$f(x)=\log(||x-2|-2|-1)$$ is$$
    Solution
    Given,
    $$f(x)=\log (|| x-2|-2|-1)$$

    Now,
    $$\mid p(-2|-2|>1$$
    $$|x-2|-2>\mid \quad 0 r-(|x-2|-2)>1$$
    $$\Rightarrow \quad|x-2|>3 \quad$$ or $$\quad|x-2|-2<-1$$
    $$\Rightarrow \quad x-2\rangle 3-(i)$$ or $$|x-2|<-1+2$$
    $$-(x-2)>3 \longrightarrow$$ (ii)  $$|x-2|<1 - (iii)$$.

    From (i) and (ii)
    $$\Rightarrow \quad x>5 ; x-2<-3$$
    $$\Rightarrow \quad x>5, \quad x<-3+2$$
    $$\Rightarrow \quad x>5, \quad x<-1$$
    $$x \in[-\infty,-1) \cup(5, \infty)$$ - (iv)

    From (iii)
    $$\begin{array}{ll}x-2<1 . & \text { or }-x-2<1 \\ x<3 & ; \quad x-2 >-1 \\ x<3 & , x>1\end{array}$$
    $$x \in[1,3)$$ - $$(v)$$
    From (iv) and (v)
    option $$B:(-\infty,-1) \cup(1,3) \cup(5, \infty)$$
  • Question 5
    1 / -0
    Let g be the inverse function of differentiable function f and $$G\left( x \right) =\frac { 1 }{ g\left( x \right)  } if\quad f\left( 4=2 \right) $$ and $$f'\left( 4 \right) =\frac { 1 }{ 16 } $$, then the value of $${ \left( G'\left( 2 \right)  \right)  }^{ 2 }$$ equals to:
    Solution

  • Question 6
    1 / -0
    If $$f:( - 1,1) \to B$$ , is a function defined by $$f(x) = {\tan ^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}$$, then find $$B$$ when $$f(x)$$ is both one-one and onto function. 
    Solution
    For $$x \epsilon (-1,1)$$, we have
    $$f(x)=\tan^{-1}\left[\dfrac {2x}{1-x^2}\right]$$
    Substituting $$x=\tan\theta$$ in above equation.
    Therefore, $$f(\tan \theta)=\tan^{-1}\left[\dfrac {2\tan \theta}{1-\tan^2\theta}\right]$$
    $$=\tan^{-1}\tan (2\theta)=2\theta$$
    $$=2\tan ^{-1}x$$
    Thus $$-\dfrac {\pi}{2}<\tan ^{-1}\left[\dfrac {2x}{1-x^2}\right]<\dfrac {\pi}{2}$$
    Thus option B is correct.
  • Question 7
    1 / -0
    If  $$f \left( \dfrac { x + y } { 2 } \right) = \dfrac { f ( x ) + f ( y ) } { 2 }$$  for all  $$x , y \in R$$  and  $$f ^ { \prime } ( o ) = - 1 , f ( o ) = 1$$  then  $$f(2)=$$
    Solution
    let $$f(x)=ax+b$$
    $$f(0)=1\implies b=1$$
    $$f'(0)=-1 \implies a=-1$$
    $$\implies f(x)=1-x$$
    $$\implies f(2)=-1$$
  • Question 8
    1 / -0
    If $$f(x)=\dfrac {4^{x}}{4^{x}+2}$$, then the value of $$f(x)+f(1-x)$$ is
    Solution
    Given $$f{\left( x \right)} = \cfrac{{4}^{x}}{{4}^{x} + 2}$$

    $$\therefore  f{\left( 1 - x \right)} = \cfrac{{4}^{1-x}}{{4}^{1-x} + 2}$$

    $$\Rightarrow f{\left( 1 - x \right)} = \cfrac{\left( \cfrac{4}{{4}^{x}} \right)}{\left( \cfrac{4}{{4}^{x}} \right) + 2}$$

    $$\Rightarrow f{\left( 1 - x \right)} = \cfrac{4}{4 + {4}^{x} \cdot 2} = \cfrac{2}{2 + {4}^{x}}$$

    Therefore,

    $$f{\left( x \right)} + f{\left( 1 - x \right)} = \cfrac{{4}^{x}}{2 + {4}^{x}} + \cfrac{2}{2 + {4}^{x}}$$

    $$\Rightarrow f{\left( x \right)} + f{\left( 1 - x \right)} = \cfrac{{4}^{x} + 2}{2 + {4}^{x}} = 1$$
  • Question 9
    1 / -0
    Let $$f(x)$$ be a function whose domain is $$[-5,7]$$. Let $$g(x) =|2x+5|$$, then domain of $$(fog) (x)$$ is 
    Solution

  • Question 10
    1 / -0
    If $$f(x)=x^{3}+x^{2}f'(1)+xf''(2)+f'''(3)\ \forall x\ \epsilon \ R$$, then $$f(x)$$ is
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now