Self Studies

Functions Test 38

Result Self Studies

Functions Test 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A function $$f$$ from the set of natural numbers to integers defined by $$f(n)=\begin{cases} \cfrac { n-1 }{ 2 } ,\quad \text{when n is odd} \\ -\cfrac { n }{ 2 } ,\quad \text{when n is even} \end{cases}$$  is
    Solution
    $$one-one$$ test of $$f:$$
    Let $$x_1$$ and $$x_2$$ be any two elements in the domain $$(N).$$
    $$Case\,I:$$ When both $$x_1$$ and $$x_2$$ are even.

    Let $$f(x_1)=f(x_2)$$
    $$\Rightarrow$$  $$\dfrac{-x_1}{2}=\dfrac{x_2}{2}$$
    $$\Rightarrow$$  $$-x_1=-x_2$$
    $$\Rightarrow$$  $$x_1=x_2$$

    $$Case\,II:$$ When both $$x_1$$ and $$x_2$$ are odd.

    Let $$f(x_1)=f(x_2)$$
    $$\Rightarrow$$  $$\dfrac{x_1-1}{2}=\dfrac{x_2-1}{2}$$
    $$\Rightarrow$$  $$x_1-1=x_2-1$$
    $$\Rightarrow$$  $$x_1=x_2$$

    $$Case\,III:$$ When $$x_1$$ be even and $$x_2$$ be odd.

    Then, $$f(x_1)=\dfrac{-x_1}{2}$$ and $$f(x_2)=\dfrac{x_2-1}{2}$$
    Then clearly, 
    $$\Rightarrow$$  $$x_1\ne x_2$$
    $$\Rightarrow$$  $$f(x_1)\ne f(x_2)$$
    From, all the cases, we can say that, $$f$$ is one-one.

    $$onto$$ test of $$f:$$
    Co-domain of $$f=Z=\{....,-3,-2,-1,0,1,2,3,...\}$$
    Range of $$f=\left\{...,\dfrac{-2-1}{2},\dfrac{-(-2)}{2},\dfrac{-1-1}{2},\dfrac{0}{2},\dfrac{1-1}{2},\dfrac{-2}{2},\dfrac{3-1}{2},...\right\}$$
    Range of $$f=\{...,-2,1,-1,0,0,-1,1,..\}$$
    $$\Rightarrow$$  Co-domain of $$f=$$ Range of $$f$$
    $$\therefore$$  $$f$$ is onto.
  • Question 2
    1 / -0
    Let $$f:Z\rightarrow Z$$ be given by $$f(x)=\begin{cases} \cfrac { x }{ 2 } ,\quad \text{if}\ x \ \text{is even} \\ 0,\quad \text{if }\ x \ \text{is odd} \end{cases}$$. Then, $$f$$ is
    Solution
    $$Injectivity:$$
    Let $$x_1$$ and $$x_2$$ be two elements in the domain $$(Z)$$, such that,
    $$f(x_1)=f(x_2)$$
    $$Case\,I:$$
    Let both $$x_1$$ and $$x_2$$ be even.
    Then, $$f(x_1)=f(x_2)$$
    $$\Rightarrow$$  $$\dfrac{x_1}{2}=\dfrac{x_2}{2}$$
    $$\Rightarrow$$  $$x_1=x_2$$
    $$Case\,II:$$
    Let both $$x_1$$ and $$x_2$$ be odd.
    Then, $$f(x_1)=f(x_2)$$
    $$\Rightarrow$$  $$0=0$$
    Here, we cannot determine whether $$x_1=x_2.$$
    So, $$f$$ is not one-one.

    $$Surjectivity:$$
    Let $$y$$ be an element in  the co-domain $$(Z)$$, such that
    Co-domain of $$f=Z=\{0,\pm 1,\pm 2,\pm 3,\pm 4,...\}$$
    Range of $$f=\left\{0,0,\dfrac{\pm 2}{2},0,\dfrac{\pm 4}{2},...\right\}=\{0,\pm 1,\pm 2,....\}$$
    $$\Rightarrow$$  Co-domain of $$f=$$ Range of $$f$$
    $$\therefore$$  $$f$$ is onto.
    .
  • Question 3
    1 / -0
    If $$g(x)={ x }^{ 2 }+x-2$$ and $$\cfrac { 1 }{ 2 } (g\circ f(x))=2{ x }^{ 2 }-5x+2$$, then $$f(x)$$ is equal to
    Solution
    We will solve this problem by the trial and error method.
    Let us check option $$A$$ first.
    If $$f(x)=2x-3$$
    $$g(x)=x^2+x-2$$                   [ Given ]
    $$\Rightarrow$$  $$\dfrac{1}{2}(g\circ f)(x)=g[f(x)]$$
                                 $$=\dfrac{1}{2}g(2x-3)$$

                                 $$=\dfrac{1}{2}[(2x-3)^2+(2x-3)-2]$$

                                 $$=\dfrac{1}{2}[4x^2+9-12x+2x-3-2]$$

                                 $$=\dfrac{1}{2}[4x^2-10x+4]$$
                                 $$=2x^2-5x+2$$
    The given condition is satisfied by $$A.$$

  • Question 4
    1 / -0
    A function $$f$$ from the set of natural numbers to the set of integers defined by
    $$f(n)=\begin{cases} \cfrac { n-1 }{ 2 } ,\quad \text{when n is odd} \\ -\cfrac { n }{ 2 } ,\quad \text{when n is even} \end{cases}$$
    Solution
    $$one-one$$ test of $$f:$$
    Let $$x_1$$ and $$x_2$$ be any two elements in the domain $$(N).$$
    $$Case\,I:$$ When both $$x_1$$ and $$x_2$$ are even.

    Let $$f(x_1)=f(x_2)$$
    $$\Rightarrow$$  $$\dfrac{-x_1}{2}=\dfrac{x_2}{2}$$
    $$\Rightarrow$$  $$-x_1=-x_2$$
    $$\Rightarrow$$  $$x_1=x_2$$

    $$Case\,II:$$ When both $$x_1$$ and $$x_2$$ are odd.

    Let $$f(x_1)=f(x_2)$$
    $$\Rightarrow$$  $$\dfrac{x_1-1}{2}=\dfrac{x_2-1}{2}$$
    $$\Rightarrow$$  $$x_1-1=x_2-1$$
    $$\Rightarrow$$  $$x_1=x_2$$

    $$Case\,III:$$ When $$x_1$$ be even and $$x_2$$ be odd.

    Then, $$f(x_1)=\dfrac{-x_1}{2}$$ and $$f(x_2)=\dfrac{x_2-1}{2}$$
    Then clearly, 
    $$\Rightarrow$$  $$x_1\ne x_2$$
    $$\Rightarrow$$  $$f(x_1)\ne f(x_2)$$
    From, all the cases, we can say that, $$f$$ is one-one.

    $$onto$$ test of $$f:$$
    Co-domain of $$f=Z=\{....,-3,-2,-1,0,1,2,3,...\}$$
    Range of $$f=\left\{...,\dfrac{-2-1}{2},\dfrac{-(-2)}{2},\dfrac{-1-1}{2},\dfrac{0}{2},\dfrac{1-1}{2},\dfrac{-2}{2},\dfrac{3-1}{2},...\right\}$$
    Range of $$f=\{...,-2,1,-1,0,0,-1,1,..\}$$
    $$\Rightarrow$$  Co-domain of $$f=$$ Range of $$f$$
    $$\therefore$$  $$f$$ is onto.
  • Question 5
    1 / -0
    Let $$M$$ be the set of all $$2\times 2$$ matrices with entries from the set $$R$$ of real numbers. Then the function $$f:M\rightarrow R$$ defined by $$f(A)=\left| A \right| $$ for every $$A\in M$$, is
    Solution
    $$M=\left\{A=\begin{bmatrix} a & b\\ c& d\end{bmatrix}: a,b,c,d\in R\right\}$$
    $$f:M\rightarrow R$$ is given by $$f(A)=|A|$$
    $$Injectivity:$$
    $$f\left(\begin{bmatrix} 0 & 0\\0& 0\end{bmatrix} \right )=\begin{vmatrix} 0&0\\0&0\end{vmatrix}=0$$

    and $$f\left(\begin{bmatrix} 1 & 0\\0& 0\end{bmatrix} \right )=\begin{vmatrix} 1&0\\0&0\end{vmatrix}=0$$

    $$\Rightarrow$$  $$f\left(\begin{bmatrix} 0&0\\0&0\end{bmatrix}\right)=f\left(\begin{bmatrix}1&0\\0&0\end{bmatrix}\right)=0$$
    So, $$f$$ is not one-one.
    $$Surjectivity:$$
    Let 
    $$f(A)=y,\,A=\begin{bmatrix}a&b\\c&d\end{bmatrix}$$
    $$\Rightarrow$$  $$\begin{vmatrix} a& b\\c&d\end{vmatrix}=y$$

    $$\Rightarrow$$  $$ad-bc=y$$
    $$\Rightarrow$$  $$a,b,c,d\in R$$ implies $$y\in R$$
    $$\Rightarrow$$ CoDomain=Range.
    $$\therefore$$  $$f$$ is onto.
  • Question 6
    1 / -0
    The function $$f:R\rightarrow R$$ defined by $$f(x)=(x-1)(x-2)(x-3)$$ is
    Solution
    $$f(x)=(x-1)(x-2)(x-3)$$

    $$one-one$$ test:
    $$\Rightarrow$$  $$f(1)=(1-1)(1-2)(1-3)=0$$
    $$\Rightarrow$$  $$f(2)=(2-1)(2-2)(2-3)=0$$
    $$\Rightarrow$$  $$f(3)=(3-1)(3-1)(3-3)=0$$
    $$\Rightarrow$$  $$f(1)=f(2)=f(3)=0$$
    We can see, $$1,2,3$$ has same image $$0.$$
    $$\therefore$$  $$f$$ is not one-one.

    $$onto$$ test:
    Let $$y$$ be an element in the co-domain $$R,$$ such that
    $$y=f(x)$$
    $$\Rightarrow$$  $$y=(x-1)(x-2)(x-3)$$
    Since, $$y\in R$$ and $$x\in R$$.
    $$\therefore$$  $$f$$ is onto.
  • Question 7
    1 / -0
    Let $$S$$ be the set of all real roots of the equation, $${ 3 }^{ x }\left( { 3 }^{ x }-1 \right) +2=\left| { 3 }^{ x }-1 \right| +\left| { 3 }^{ x }-2 \right| $$. Then $$S$$:
    Solution


    $$3^x (3^x - 1) + 2 = |3^x - 1| + |3^x - 2|$$

    Let $$3^x = t$$
    So, $$t (t - 1) + 2 = | t - 1| + |t - 2|$$
    $$\Rightarrow t^2 - t + 2 = |t - 1|+ |t - 2|$$

    $$f(t)=t^2-t+2 \quad\quad\text{[green curve]}$$
    $$g(t)=|t-1|+|t+2|\quad\quad\text{[blue curve]}$$

    we plot $$f(t)=t^2-t+2$$ and $$g(t)=|t-1|+|t+2|$$
    $$\text{these two curves intersect at two points but only one root is positive.}$$
    $$\text{As} \,3^x \,\text{is always positive, therefore only positive value of} \,t\, \text{will be the solution.}$$

    $$\text{Therefore, we have only one solution.}$$

  • Question 8
    1 / -0
    If $$f(x) = \dfrac{x+1}{x-1}$$, then the valueof $$f(f(x))$$ is equal to
    Solution
    $$f(x)=\dfrac{x+1}{x-1}$$

    $$\therefore f(f(x))=f\left(\dfrac{x+1}{x-1}\right)$$

    $$\dfrac{\dfrac{x+1}{x-1}+1}{\dfrac{x+1}{x-1}-1}$$

    $$=\dfrac{x+1+x-1}{x+1-x+1}$$

    $$=\dfrac{2x}{2}$$

    $$=x$$
  • Question 9
    1 / -0
    Let $$f : x \rightarrow y $$ be such that $$f(1) = 2$$ and $$f(x + y) = f(x) f(y)$$ for all natural numbers x and y. If $$\displaystyle \sum_{k= 1}^n f(a + k) = 16 (2^n - 1)$$ , then a is equal to 
    Solution
    We have,
    $$f(1)=2$$ and $$f(x+y)=f(x).f(y)$$
    Now, $$f(2)=f(1+1)=f(1).f(1)=2.2=2^2$$
    $$f(3)=f(2+1)+f(2).f(1)=2^2.2=2^3$$
    and so on
    $$\therefore f(x)=2^n$$......(i)
    Now, we have
    $$\displaystyle \sum^n_{k=1}f(a+k)=16(2^n-1)$$
    $$\Rightarrow f(a+1)+f(a+2)+----f(a+n)=16(2^n-1)$$
    $$\Rightarrow f(a).f(1)+f(a).f(2)+-----f(a).f(n)=16(2^n-1)$$
    $$\Rightarrow f(a)=[f(1)+f(2)+---f(n)]=16(2^n-1)$$
    $$\Rightarrow f(a)[2+2^2+----+2^n]=16(2^n-1)$$

    $$\Rightarrow f(a).[2\dfrac{(2^n-1)}{2-1}]=16(2^n-1)$$
    $$\Rightarrow 2f(a).(2^n-1)=16.(2^n-1)\Rightarrow f(a)=8$$
    $$\Rightarrow 2^a=8[\because f(x)=2^n\Rightarrow f(a)=2^a]$$
    $$\Rightarrow 2^a=2^3=a=3$$
  • Question 10
    1 / -0
    If $$f(x)=\dfrac{(4x+3)}{(6x-4)}, x\neq \dfrac{2}{3}$$ then $$(f o f)(x)=?$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now