Self Studies

Functions Test ...

TIME LEFT -
  • Question 1
    1 / -0

    Directions For Questions

    Let $$f :R\rightarrow R$$ is a quadratic function, $$f(x) = ax^{2} + bx + c$$ where $$a, b, c$$ are non zero real numbers and it satisfies certain properties
    (i)$$f:\left [ 0,2 \right ]\rightarrow \left [ 0,2 \right ]$$ is bijective
    (ii)$$f:\left [ \alpha,2 + \alpha\right ]\rightarrow \left [ 0,2 \right ]$$ is bijective for some non -zero real value of $$\alpha$$.

    ...view full instructions

    $$l= \lim_{x\rightarrow \alpha}\displaystyle \frac{f(x)}{x(x-\alpha)(x-2)}$$ is

  • Question 2
    1 / -0

    The domain of the function $$\displaystyle y=\underbrace { \log _{ 10 } \log _{ 10 } ...\log _{ 10 } x }_{ \text{ n times } } $$ is

  • Question 3
    1 / -0

    If $$\displaystyle f \left ( x \right ) = px + q$$ and $$\displaystyle f \left ( f\left ( f\left ( x \right ) \right ) \right ) = 8x + 21$$, where $$p$$ and $$q$$ are real numbers, the $$ p + q$$ equals

  • Question 4
    1 / -0

    Directions For Questions

    Let $$\displaystyle f(x) = x^2 - 2x - 1 \: \forall \: x \: \in \: R$$. Let $$\displaystyle f: (-\infty, a] \rightarrow [b, \infty)$$, where $$a$$ is the largest real number for which $$f(x)$$ is bijective.

    ...view full instructions

    The value of $$(a + b)$$ is equal to

  • Question 5
    1 / -0

    The domain of the function $$\displaystyle f\left( x \right)=\sin ^{ -1 }{ \left\{ \log _{ 2 }{ \left( \frac { 1 }{ 2 } { x }^{ 2 } \right)  }  \right\}  } $$ is

  • Question 6
    1 / -0

    $$K(x)$$ is a function such that $$K(f(x))=a+b+c+d$$,
    Where,
    $$a=\begin{cases}
    0 & \text{ if f(x) is even}  \\ 
    -1 & \text{ if f(x) is odd} \\ 
    2 & \text{ if f(x) is neither even nor odd} 
    \end{cases}$$
    $$b=\begin{cases}
    3 & \text{ if  f(x) is periodic} \\ 
    4 & \text{  if  f(x) is  aperiodic}
    \end{cases}$$
    $$c=\begin{cases}
    5 & \text{ if  f(x) is  one one} \\ 
    6 & \text{  if  f(x) is many one}
    \end{cases}$$
    $$d=\begin{cases}
    7 & \text{ if  f(x) is onto} \\ 
    8 & \text{  if  f(x) is into}
    \end{cases}$$ 
    $$h:R\rightarrow R,h(x)=\left ( \displaystyle \frac{e^{2x}+e^{x}+1}{e^{2x}-e^{x}+1} \right )$$ 

    On the basis of above information, answer the following questions.$$K(\phi(x)) $$

  • Question 7
    1 / -0

    Let $$f:{x, y, z}\rightarrow (a, b, c)$$ be a one-one function. It is known that only one of the following statements is true:

    (i) $$f(x)\neq b$$
    (ii)$$f(y)=b$$
    (iii)$$f(z)\neq  a$$

  • Question 8
    1 / -0

    The domain of function $$\displaystyle f(x)=\sqrt{x-\sqrt{1-x^{2}}}$$ is

  • Question 9
    1 / -0

    The domain of the function $$\displaystyle f(x)=\sqrt{1-\sqrt{1-\sqrt{1-x^{2}}}}$$ is

  • Question 10
    1 / -0

    Let $$\displaystyle f(x)=\sin^{2}\dfrac{x}{2}+\cos^{2}\frac{x}{2}$$ and $$g(x)=\sec^{2}x-\tan^{2}x.$$ The two functions are equal over the set 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now