Self Studies

Functions Test 46

Result Self Studies

Functions Test 46
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The domain of the function $$\displaystyle f(x)={}^{16-x}C_{2x-1}+{}^{20-3x}P_{4x-5},$$ where the symbols have their usual meanings, is the set:
    Solution
    $$^{ n }C_{ r }$$ is defined when $$n,r \in N, \; n \geq r$$ ($$r$$ can be zero)
    $$ \displaystyle ^{ 16-x }C_{ 2x-1 }$$ is defined for 
    $$16-x>0.....(1)\\ 2x-1\ge 0.....(2)\\ 16-x\ge 2x-1.....(3)$$

    Combining $$(1), (2)$$ and $$(3)$$ we get
    .
    $$x=\{1,2,3,4,5 \}$$.........$$(i)$$
    .
    Similarly, $$^{ 20-3x }P_{ 4x-5 }$$ is defined for 
    $$20-3x>0....(4)\\ 4x-5\ge 0....(5)\\ 20-3x\ge 4x-5.....(6)$$
    .
    Combining $$(4), (5)$$ and $$(6)$$ we get
    .
    $$x= \{2,3 \}$$.........$$(ii)$$
    .
    From $$(i)$$ and $$(ii)$$, the common values of $$x$$ are $$2$$ and $$3$$.
  • Question 2
    1 / -0
    The largest set of real values of $$x$$ for which $$\displaystyle f(x)=\sqrt{(x+2)(5-x)}-\frac{1}{\sqrt{x^{2}-4}}$$ is a real function is
    Solution
    $$\sqrt { \left( x+2 \right) \left( 5-x \right)  } $$ is defined for 

    $$\left( x+2 \right) \left( 5-x \right) \ge 0\\ \Rightarrow \left( x+2 \right) \left( x-5 \right) \le 0\\ \Rightarrow x\in \left[ -2,5 \right] .........(1)$$
    .
    Similarly, $$\dfrac { 1 }{ \sqrt { { x }^{ 2 }-4 }  } $$ is defined for 

    $${ x }^{ 2 }-4>0\\ x\in \left( -\infty ,-2 \right) \bigcup  \left( 2,\infty  \right) ......(2)$$
    .
    From $$(1)$$ and $$(2)$$, the domain of $$f(x)$$ is $$x \in \left( 2, 5 \right]   $$
  • Question 3
    1 / -0
    The domain of $$\displaystyle f(x)=\frac{1}{\sqrt{|\cos\:x|+\cos\:x}}$$ is 
  • Question 4
    1 / -0
    If $$y$$ is a function of $$x$$ defined by $$\displaystyle a^{x+y}=a^{x}+a^{y}$$ where $$a$$ is a real constant $$\displaystyle (a>1)$$ then the domain of $$y(x)$$ is 
    Solution
    $$a^{x+y}=a^{x}+a^{y}$$

    $$1=a^{-x}+a^{-y}$$

    $$a^{-y}=1-a^{-x}$$

    Taking $$\log_a$$ on both sides, we get

    $$-y=\log_{a}(1-a^{-x})$$

    $$y=-\log_{a}(1-a^{-x})$$

    Now 

    $$1-a^{-x}>0$$

    $$1>a^{-x}$$

    $$a^{x}>1$$

    $$x>0$$

    Hence domain for the above function is $$(0,\infty)$$.
  • Question 5
    1 / -0
    The total number of injective mappings from a set with $$m$$ elements to a set with $$n$$ elements, $$m \leq n $$ is 
    Solution
    $$a_{1} \in $$A can have $$n$$ images in $$B$$, but the element $$a_{2}$$  will have only $$(n-1)$$ images as the mappings are to be one-one (injective). 

    Similarly the elements $$a_{3}$$ will have $$(n-2)$$ images.

    Hence the total number of mappings will be, 

    $$n(n-1)(n-2)...(n-\overline{m-1})=n(n-1)(n-2)...(n-m+1)$$

    Multiply above and below by $$(n-m)(n-m-1)...3.2.1$$ 

    $$\therefore$$ Required numbers is $$\displaystyle \frac{n!}{(n-m)!} $$
  • Question 6
    1 / -0
    If $$f:R\rightarrow R$$ and $$g:R\rightarrow R$$ are given by $$f(x)=|x|$$ and $$g(x)=[x]$$ for each $$x\in R,$$ then $$\left\{ x\in R:g\left( f\left( x \right) \right) \le f\left( g\left( x \right) \right)  \right\} =$$
    Solution
    $$g\left( f\left( x \right)  \right) \le f\left( g\left( x \right)  \right) \Rightarrow g\left( \left| x \right|  \right) \le f\left( \left[ x \right]  \right) \Rightarrow \left[ \left| x \right|  \right] \le \left[ \left| x \right|  \right] $$
    This is true for each $$x\in R$$
  • Question 7
    1 / -0
    Let $$f$$ and $$g$$ be increasing and decreasing functions respectively from $$\displaystyle \left ( 0,\infty  \right )$$ to $$\left ( 0,\infty  \right )$$ and let $$h\left ( x \right )=f\left [ g\left ( x \right ) \right ]$$. If $$h\left ( 0 \right )=0$$ then $$ h\left ( x \right )-h\left ( 1 \right )$$ is
    Solution
    Let $$\displaystyle F\left ( x \right )=h\left ( x \right )-h\left ( 1 \right )=f\left ( g\left ( x \right ) \right )-h\left ( 1 \right )$$ $$\displaystyle F'\left ( x \right )=f'\left ( g\left ( x \right ) \right ).g'\left ( x \right )=\left ( + \right )\left ( - \right )=-ive.$$ (As f is increasing function $$\displaystyle f'\left ( g\left ( x \right ) \right )$$ is +ive and as g is decreasing function $$\displaystyle g'\left ( x \right )$$ is-ive.) 
    Since F'(x) is-ive therefore F(x)i.e.h(x)-h(1) is decreasing function.
    Now split the interval $$\displaystyle I=\left [ 0,\infty  \right ]$$ into two intervals $$\displaystyle I_{1},0\leq x< 1and I_{2}, 1\leq x< \infty ,$$ 
    Apply the definition of decreasing function on $$\displaystyle h\left ( x \right )-h\left ( 1 \right ):$$ on $$\displaystyle I_{1},0\leq x< 1,\underset{\left ( Big \right )}{h\left ( x \right )}-\underset{\left ( Less \right )}{h\left ( 1 \right )}=+ive$$ On $$\displaystyle I_{2},1\leq x< \infty ,\underset{\left ( Less \right )}{h\left ( x \right )}-\underset{\left ( Big \right )}{h\left ( 1 \right )}=-ive$$ Hence for $$\displaystyle I,h\left ( x \right )-h\left ( 1 \right )$$ is neither always zero nor always +ive nor always-ive,nor strictly increasing throughout.
    Hence (v) is the correct answer.
  • Question 8
    1 / -0
    The domain of $$\displaystyle \cos ^{-1}\left ( \frac{2-\left | x \right |}{4} \right )+\left [ \log \left ( 3-x \right ) \right ]^{-1}$$ is
    Solution
    There are two components, Let's split them.
    Component 1:
    $$\displaystyle { \cos }^{ -1 }\left(\frac { 2-\left| x \right|  }{ 4 }\right)$$
    We know that domain of $$\displaystyle {\cos}^{-1}(x)$$ is $$[-1, 1]$$,
    $$\displaystyle \therefore -1 \le \frac { 2-\left| x \right|  }{ 4 } \le 1$$
    Multiply both sides by $$4$$ and then subtract $$2$$ from both sides, inequality reduces to
    $$\displaystyle -6\le -\left|x\right| \le 2$$, if this is multiplied by $$-1$$ then the equality will be reversed, $$\displaystyle -2\le\left|x\right|\le6$$, which gives the range of $$\displaystyle x$$ for component $$1$$, $$\displaystyle x\in[-6,6]$$ ..... $$(i)$$

    Component 2:
    $$\displaystyle \left\{ \log(3-x) \right\}^{ -1 }$$
    Domain of generalized $$\displaystyle { \log(x) }^{ -1 }$$ is $$\displaystyle (0,1)\cup(1,\infty)$$,
    Here $$1$$ is excluded because $$\displaystyle \log(x)$$ is in the denominator.
    $$\displaystyle \therefore (3-x)>0$$, which gives $$\displaystyle x<3$$
    Domain of component $$2$$ is $$\displaystyle (\infty,2)\cup(2,3)$$ ..... $$(ii)$$ 

    Final domain of equation $$\displaystyle { \cos }^{ -1 }\left(\frac { 2-\left| x \right|  }{ 4 }\right)  + { \log(3-x) }^{ -1 }$$ is the intersection of $$(i)$$ and $$(ii)$$
    Hence, $$x\in \displaystyle [-6,2)\cup(2,3)$$
  • Question 9
    1 / -0
    Let $$\displaystyle f\left ( x \right )=\frac{ax^{2}+2x+1}{2x^{2}-2x+1}$$, the value of $$a$$ for which $$\displaystyle f:R\rightarrow \left [ -1,2 \right ]$$ is onto , is
    Solution
    Given $$\displaystyle f\left ( x \right )=\frac{ax^{2}+2x+1}{2x^{2}-2x+1}$$

    Since, $$\displaystyle f:R\rightarrow \left [ -1,2 \right ]$$ is onto

    $$R(f)=Co-domain [-1,2]$$

    $$-1 \le \dfrac{ax^{2}+2x+1}{2x^{2}-2x+1}\le 2$$

    $$\Rightarrow -(2x^{ 2 }-2x+1)\le ax^{ 2 }+2x+1\le 2(2x^{ 2 }-2x+1)$$

    $$\Rightarrow -2x^{ 2 }+2x-1\le ax^{ 2 }+2x+1\le 4x^{ 2 }-4x+2$$   ....(1)

    $$\Rightarrow -2x^{ 2 }+2x-1\le ax^{ 2 }+2x+1$$

    $$\Rightarrow (a+2)x^2+2\ge 0$$

    So for all $$x\in R$$ , $$a+2\ge 0$$

    $$\Rightarrow a\ge -2$$        .....(2)

    From the inequality (1), it follows that 

    $$ax^{ 2 }+2x+1\le 4x^{ 2 }-4x+2$$

    $$\Rightarrow (a-4)x^2+6x-1 \le 0$$

    $$\Rightarrow a-4 < 0$$ and $$D\le 0$$

    $$\Rightarrow a<4 $$ and $$36+4a-16 \le 0$$

    $$\Rightarrow a<4 $$ and $$a\le -5$$     ....(3)

    From (2) and (3), we get 

    $$a\in (-\infty,-5]\cup [-2,4)$$
  • Question 10
    1 / -0
    The value of $$x$$ satisfying the equation $$\displaystyle \left | x-1 \right |^{\log_{3}x^{2}-2\log_{9}x}= (x-1)^7$$ is
    Solution
    $$\displaystyle (i) \log_{a}b$$ hold good if $$\displaystyle a> 0,a\neq 1,a> 1$$

     i.e. $$a-1> 0$$

    $$\therefore \left | a-1 \right |= a-1$$

    $$(ii) a^{b}> 0\,\,\forall\, b\in R $$

    Now from given $$\displaystyle \left | x-1 \right |^{\log_{3}x^{2}-2\log_{9}x}= (x-1)^{7}$$

    $$\displaystyle \Rightarrow \left ( x-1 \right )^{\log_{3}x^{2}-2\log_{9}x}= (x-1)^{7}$$

    $$\displaystyle\Rightarrow 2\log_{3}x-2\log^{x}{9}= 7$$ taking log at base $$(x -1)$$ bothsides. $$log_{x}{3}=7,x=3^7$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now