There are two components, Let's split them.
Component 1: $$\displaystyle { \cos }^{ -1 }\left(\frac { 2-\left| x \right| }{ 4 }\right)$$
We know that domain of $$\displaystyle {\cos}^{-1}(x)$$ is $$[-1, 1]$$,
$$\displaystyle \therefore -1 \le \frac { 2-\left| x \right| }{ 4 } \le 1$$
Multiply both sides by $$4$$ and then subtract $$2$$ from both sides, inequality reduces to
$$\displaystyle -6\le -\left|x\right| \le 2$$, if this is multiplied by $$-1$$ then the equality will be reversed, $$\displaystyle -2\le\left|x\right|\le6$$, which gives the range of $$\displaystyle x$$ for component $$1$$, $$\displaystyle x\in[-6,6]$$
..... $$(i)$$ Component 2: $$\displaystyle \left\{ \log(3-x) \right\}^{ -1 }$$
Domain of generalized $$\displaystyle { \log(x) }^{ -1 }$$ is $$\displaystyle (0,1)\cup(1,\infty)$$,
Here $$1$$ is excluded because $$\displaystyle \log(x)$$ is in the denominator.
$$\displaystyle \therefore (3-x)>0$$, which gives $$\displaystyle x<3$$
Domain of component $$2$$ is $$\displaystyle (\infty,2)\cup(2,3)$$ ..... $$(ii)$$
Final domain of equation $$\displaystyle { \cos }^{ -1 }\left(\frac { 2-\left| x \right| }{ 4 }\right) + { \log(3-x) }^{ -1 }$$ is the intersection of
$$(i)$$ and
$$(ii)$$ Hence, $$x\in \displaystyle [-6,2)\cup(2,3)$$