Self Studies

Functions Test 48

Result Self Studies

Functions Test 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the maximum value of $$g(f(x))$$ if:
    $$f(x) = x + 4$$ and
    $$g(x) = 6 - x^{2}$$
    Solution
    Given, $$f(x)=x+4, g(x)=6-x^2$$
    $$\therefore g(f(x)) = g(x+4) = 6-{(x+4)}^{2}$$
    The minimum value of $${(x+4)}^{2}$$ is $$0$$ which occurs at $$x=-4$$.
    So, the maximum value of $$g(f(x))$$ is $$6-0 = 6$$.
  • Question 2
    1 / -0
    $$f(x)\, =\, \sqrt{\log_{x}(\cos2 \pi x)}$$ Domain of the function is :
    Solution
    $$f\left( x \right)=\sqrt { \log _{ x }{ \left( \cos { 2\pi x }  \right)  }  } $$
    i) $$log$$ is defined when its base $$x>0$$ and $$x\neq 1$$

    ii) and $$\displaystyle\cos { 2\pi x } >0 \Rightarrow 2\pi x>(2n+1)\frac { \pi  }{ 2 } $$$$\displaystyle\Rightarrow x>\frac { \left( 2n+1 \right)  }{ 4 } $$

    iii) Square roots is defined when $$\log _{ x }{ \left( \cos { 2\pi x }  \right)  } \ge 0$$
    $$\Rightarrow\cos { 2\pi x } \ge1 \Rightarrow 2\pi x\ge2n\pi \Rightarrow x\ge n$$

    Therefore from (i),(ii) and (iii) we get

    $$(0, \dfrac14) \cup (\dfrac34, 1) \cup \{x : x \in N, x \leq 2\}$$
  • Question 3
    1 / -0
    If f(x)=x+5 and g(x)=$$\displaystyle \sqrt{x^{2}-9}$$  then find the domain of gof(x)
    Solution
    $$ gof(x) = g(f(x)) = \sqrt {{(x+5)}^{2} -9} = \sqrt {x^2 + 25 + 10x -9} $$
               $$ = \sqrt {x^2 + 16 + 10x} = \sqrt {(x+8)(x+2)} $$

    Now, for the square root to have a real value, both $$ (x+8)\ and\ (x+2) $$ should be positive or equal to zero or both should be negative or equal to zero.

    Case 1: When both
    $$ x+8 \ge 0 $$   and $$ x + 2 \ge 0 $$
    $$ => x \ge -8 $$  and $$ x\ge -2 $$

    $$ => x \ge -2 $$ is the solution for this case

    Case 2: When both
    $$ x+8 \le 0 $$   and $$ x + 2 \le 0 $$
    $$ => x \le -8 $$  and $$ x\le -2 $$

    $$ => x \le -8 $$ is the solution for this case.

    So, combining these both, we get the domain, $$ x \le -8\ and\   x \ge -2$$
  • Question 4
    1 / -0
    The set of real values of $$x$$ satisfying the equality $$\left [\displaystyle \frac{3}{x}\, \right]\, +\, \left[\dfrac{4}{x}\, \right]\, =\, 5$$ (where $$[. ]$$ denotes the greatest integer function) belongs to the interval $$\left( a,\, \displaystyle \frac{b}{c}\, \right]$$ where $$a, b, c$$ $$\in$$ $$N$$ and $$\displaystyle \frac{b}{c}$$ is in its lowest form. Find the value of $$a + b + c + abc$$.
    Solution
    Given, $$\left[ \dfrac { 3 }{ x } \,  \right] \, +\, \left[ \dfrac { 4 }{ x } \,  \right] \, =\, 5,$$

    $$ 2 \leq\dfrac { 3 }{ x } <3,\quad 3 \leq \dfrac { 4 }{ x } <4, $$

    $$ x \leq\dfrac { 3 }{ 2 } ,\quad x>1\quad and\quad x\leq\dfrac { 4 }{ 3 } ,\quad x>1$$

    $$ i.e,\quad x \leq\dfrac { 4 }{ 3 } ,\quad x>1 \implies x \epsilon (1,\dfrac { 4 }{ 3 } ]$$

    $$\therefore a=1,\quad b=4,\quad c=3$$

    $$ a + b + c + abc=1+4+3+1.3.4=20$$
  • Question 5
    1 / -0
    Find $$g(x)$$, if $$f(x) = 5x^{2} + 4$$ and $$f(g(3)) = 84$$
    Solution
    Given, $$f(x)=5x^2+4$$, $$f(g(3))=84$$ 
    $$\Rightarrow f(g(3)) = 5{g(3)}^{2} +4 = 84$$
    $$\Rightarrow 5{g(3)}^{2}=80$$
    $$\Rightarrow g(3) = \sqrt{16} = 4$$
    $$\Rightarrow g(x) = {x}^{2}-5$$ satisfies the relation $$g(3) = 4$$
    Therefore, the correct option is $$D$$.
  • Question 6
    1 / -0

    Directions For Questions

    Let $$f: A\rightarrow B, g: B\rightarrow C$$ and $$h:C\rightarrow D$$ be three functions, then the function $$gof:A \rightarrow C$$ defined by gof(x) g[f(x)] for all $$x \epsilon A$$ is called the composition of f and g.

    ...view full instructions

    If $$h(x) = x^2, g(x)= x^2 -3$$ and f(x)= x -2, what can you say about ho(gof) and (hog)of?
    Solution

  • Question 7
    1 / -0
    Which of the following functions are not identical?
  • Question 8
    1 / -0
    The function $$f(x)={x}^{2}+bx+c$$, where $$b$$ and $$c$$ real constants, describes
    Solution
    $$f\left( x \right) =x^{2}+bx+c$$ when $$f\left( x_{1} \right) =f\left( x_2 \right)$$ 
    Since this a quadratic function and quadratic function is neither one-one  nor onto.
    so option D is correct.
  • Question 9
    1 / -0

    Directions For Questions

    Let $$f: A\rightarrow B, g: B\rightarrow C$$ and $$h:C\rightarrow D$$ be three functions, then the function $$gof:A \rightarrow C$$ defined by gof(x) g[f(x)] for all $$x \epsilon A$$ is called the composition of f and g.

    ...view full instructions

    If f(x)=x+2and $$g(x)=x^2-3$$, then which is true?
    Solution

  • Question 10
    1 / -0
    If $$f(x) = 4x^{2} - 1$$ and $$g(x) = 8x + 7, g\circ f(2) =$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now