Self Studies

Functions Test 49

Result Self Studies

Functions Test 49
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$f:\{x, y , z\} \rightarrow \{1, 2, 3\}$$ be a one-one mapping such that only one of the following three statements and remaining two are false : $$f(x) \neq 2, f(y) =2, f(z) \neq 1$$, then 
    Solution
    $$f:\left\{ x,y,z \right\} \rightarrow \left\{ 1,2,3 \right\} $$
    $$I-f\left( x \right) \neq 2$$
    $$II-f\left( y \right) =2$$
    $$III-f\left( z \right) \neq 1$$
    1. Let statement I is true, $$\therefore $$ other two are false
    $$\therefore f\left( x \right) \neq 2,f\left( y \right) \neq 2$$
    $$\therefore f\left( z \right) =1$$
    $$f\left( x \right) \& f\left( y \right) $$ can be $$2$$ or $$3$$
    We don't know exact value of $$f\left( x \right) \& f\left( y \right) $$
    2. Let statement II is true
    $$f\left( y \right) =2\quad \therefore f\left( z \right) =1\quad $$ [$$\because f\left( z \right) \neq 1$$ is false]
    $$f\left( x \right) =3$$
    $$f\left( x \right) >f\left( y \right) >f\left( z \right) $$
  • Question 2
    1 / -0
    Domain of definition of the function $$f\left( x \right) =\sqrt { 2\sin ^{ -1 }{ \left( 2x \right) +\dfrac { \pi  }{ 3 }  }  }$$, for real value x, is
    Solution

  • Question 3
    1 / -0
    The domain of definition of the function $$f(x) = \left \{x\right \}^{\left \{x\right \}} + [x]^{[x]}$$ is (where $$\left \{\cdot \right \}$$ represents fractional part and $$[\cdot ]$$ represents greatest integral function).
    Solution

  • Question 4
    1 / -0
    Let $$f$$ be real valued function defined by $$f(x)=\sin ^{ -1 }{ \left( \cfrac { 1-\left| x \right|  }{ 3 }  \right)  } +\cos ^{ -1 }{ \left( \cfrac { \left| x \right| -3 }{ 5 }  \right)  } $$. Then domain of $$f(x)$$ is given by
    Solution

  • Question 5
    1 / -0
    $$f:\left( 0,\infty  \right) \rightarrow \left( 0,\infty  \right) $$ is defined by $$f(x)=\begin{cases} { 2 }^{ x },\quad x\in \left( 0,1 \right)  \\ { 5 }^{ x },\quad x\in [1,\infty ) \end{cases}$$ is
    Solution

  • Question 6
    1 / -0
    Let $$A=\left\{ { a }_{ 1 },{ a }_{ 2 },{ a }_{ 3 },{ a }_{ 4 }{ a }_{ 5 },{ a }_{ 6 } \right\} $$ and $$B=\left\{ { b }_{ 1 },{ b }_{ 2 },{ b }_{ 3 } \right\} $$. The number of functions of $$f:A\rightarrow B$$ such that it is onto and there are exactly three elements in $$A$$ such that $$f(A)=b$$, is
    Solution
    Since there should be exactly 3 elements in $$ A $$ such that 
    $$ f(A) = b $$
    the function $$ f$$  is a bijection from a subset $$ A_1 $$ of $$ A $$ to $$ B $$., each having 3 elements.

    Number of ways to select 3 elements from $$ A $$ $$ =\;  ^6C_3 $$

    Number of bijection from $$ A_1 $$ to $$ B $$  $$ = 3 ! $$

    Hence, the number of functions $$ =\;  ^6C_3 \; 3!$$ $$ = 120 $$
  • Question 7
    1 / -0
    Domain of the function $$f(x) = \dfrac {x - 3}{(x - 1)\sqrt {x^{2} - 4}}$$ is
  • Question 8
    1 / -0
    Let $$f(x) = \dfrac {x}{1 - x}$$ and let $$\alpha$$ be a real number. If $$x_{0} = \alpha, x_{1} = f(x_{0}), x_{2} = f(x_{1}), ....$$ and $$x_{2011} = - \dfrac {1}{2012}$$ then the value of $$\alpha$$ is
    Solution
    $$f(x)=\dfrac {x}{1-x}$$ also $$x_0=\alpha$$
    $$x_1 =f(x_0)=f(\alpha)=\dfrac {\alpha}{1-\alpha}$$
    $$x_2 =f(x_1)=f\left (\dfrac {\alpha}{1-\alpha}\right)=\dfrac {\dfrac {\alpha}{1-\alpha}}{1-\dfrac {\alpha}{1-\alpha}}=\dfrac {\alpha}{1-2\alpha}$$
    $$x_3 =f(x_2)=f\left (\dfrac {\alpha}{1-2\alpha}\right)=\dfrac {\dfrac {\alpha}{1-2\alpha}}{1-\dfrac {\alpha}{1-2\alpha}}=\dfrac {\alpha}{1-3\alpha}$$
    Analysis the values $$x_1, x_2, x_3$$, we can say that $$x_{2011}=\dfrac {\alpha}{1-20011\alpha}=-\dfrac {1}{2012}$$
    $$\Rightarrow \ 2012\alpha =-1+2011\alpha$$
    $$\Rightarrow \ 2012\alpha -2011\alpha =-1$$
    $$\Rightarrow \ \boxed {\alpha =-1}$$
  • Question 9
    1 / -0
    Domain of $$f\left( x \right) =\sqrt { 2{ \left\{ x \right\}  }^{ 2 }-3\left\{ x \right\} +1 }$$ where $$\left\{ . \right\}$$ denotes the fractional part, in $$\left\{ . \right\}$$ is
    Solution

  • Question 10
    1 / -0
    Consider set $$A={1,2,3,4}$$ and set $$B={0,2,4,6,8}$$, then the number of one-one function set $$A$$ to set $$B$$ in which $$f(i)\neq i$$ is,
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now