Self Studies
Selfstudy
Selfstudy

Functions Test 50

Result Self Studies

Functions Test 50
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f:R\rightarrow S$$ defined by
    $$f(x)=4\sin { x } -3\cos { x } +1$$ is onto, then $$S$$ is equal to
    Solution
    We have $$f(x)=4sin\:x-3cos\:x+1$$

    Therefore 
    maximum of $$f=\sqrt{4^2+(-3)^2}+1=\sqrt{16+9}+1=\sqrt{25}+1=5+1=6$$ and 
    minimum of $$f=-\sqrt{4^2+(-3)^2}+1=-\sqrt{16+9}+1=-\sqrt{25}+1=-5+1=-4$$

    $$S=$$ Range of $$f$$=$$[minimum\:f,maximum\:f]=[-4,6]$$
  • Question 2
    1 / -0
    Domain of definition of the function $$f(x) = \dfrac{3}{4 - x^2} + \log_{10} (x^3 - x),$$ is 
    Solution

  • Question 3
    1 / -0
    A function f has domain [-1, 2] and range [0, 1]. The domain and range respectively of the function g defined by g (x) = 1 -f (x+1) is 
    Solution

  • Question 4
    1 / -0
    The domain of definition of the function $$\displaystyle f(x) = \sqrt{-cos x} + \sqrt{sin x}$$ is:
  • Question 5
    1 / -0
    Let for $$a \neq a_{1} \neq 0,\ f(x)=ax^{2}+bx+c,\ g(x)=a_{1}x^{2}+b_{1}x+c_{1}$$ and $$p(x)=f(x)-g(x)$$. If $$p(x)=0$$ only for $$x=-1$$ and $$p(-2)=2$$, then the value of $$p(2)$$ is
    Solution
    Given, $$f\left(x\right)=ax^{2}+bx+c,g\left(x\right)=ax^{2}+bx+c,$$ 

    and $$p\left(x\right)=f\left(x\right)-g\left(x\right)$$

    $$p\left(x\right)=0$$ for only $$x=-1,p\left(-2\right)=2$$ and $$a\neq a_{1}\neq 0$$

    $$\therefore p\left(x\right)=(a-a_{1})x^{2}+(b-b_{1})x+(c-c_{1})$$

    The standard quadratic equation is $$ax^2+bx+c=0$$ 

    For roots to be equal  $$ \displaystyle \Rightarrow b^{2}-4ac= 0 $$

    Then Sum of roots = $$-\dfrac {b}{a}$$ 

    Here, Only root is $$-1 \Rightarrow D=0 \Rightarrow (b-b_{1})^{2}=4(a-a_{1})(c-c_{1})\rightarrow(1)$$

    Sum of roots $$\Rightarrow (-1)+(-1)=\dfrac{-(b-b_{1})}{(a-a_{1})} \Rightarrow (b-b_{1})=2(a-a_{1}) \rightarrow(2)$$

    From (1) and (2), $$c-c_{1}=(a-a_{1})\rightarrow(3)$$ 

    $$\Rightarrow p\left(x\right)=(a-a_{1})x^{2}+2(a-a_{1})x+(a-a_{1})$$

    Now, $$p\left(-2\right)=2$$

    $$\Rightarrow 2=(a-a_{1})(-2)^{2}-2(a-a_{1})(-2)+(a-a_{1})$$

    $$\Rightarrow (a-a_{1})=2$$

    Now $$p(2)=2(2)^{2}+2(2)(2)+2=18$$
  • Question 6
    1 / -0
    Let $$f(-2, 2)\rightarrow(-2, 2)$$ be a continuous function given $$f(x)=f{(x}^{2})$$. Given $$f(0)=\dfrac{1}{2}$$ then the $$4f(\dfrac{1}{2})$$
    Solution

  • Question 7
    1 / -0
    Given that $$f'(x) > g'(x)$$ for all real x, and $$f(0) = g(0)$$. Then $$f(x) < g(x)$$ for all x belongs to
    Solution

  • Question 8
    1 / -0
    If $$ \phi (x) = 3
    f(\frac{x^2}{3} ) + f(3-x^2) \forall x \in (3,4)$$ where  $$f(x) >0 \forall  x (-3,4)$$ then $$\phi (x)$$ is ____________.
    Solution

  • Question 9
    1 / -0
    The domain of the function $$ f(x) = log_{1/2}\Big(-log_2(1+\frac{1}{\sqrt{4}})-1\Big)$$
    Solution

  • Question 10
    1 / -0
    Let f(x) and g(x) be the differentiable functions for $$1\le x\le 3$$ such that f(1)=2=g(1) and f(3)=10. Let there exist exactly one real number $$cE (1,3)$$ such that 3f'(c)=g'(c), then the value of g(3) must be
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now