Self Studies

Functions Test 7

Result Self Studies

Functions Test 7
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(n+1)=f(n)$$ for all $$n\in N, f(7)=5$$  then  $$f(35)=$$
  • Question 2
    1 / -0
    If $$f(x)=\displaystyle \dfrac{x}{\sqrt{1-x^{2}}},g(x)=\displaystyle \dfrac{x}{\sqrt{1+x^{2}}} $$, then $$(fog)(x)=$$       
    Solution
    $$fog\left(x\right)=f\left(g\left(x\right)\right)$$
    $$\displaystyle =f\left(\dfrac{x}{\sqrt{1+x^{2}}}\right)$$
    $$\displaystyle =\dfrac{\dfrac{x}{\sqrt{1+x^{2}}}}{\sqrt{1-\dfrac{x^{2}}{1+x^{2}}}}=x$$
  • Question 3
    1 / -0
    The domain of $$f(x)= \displaystyle \frac{1}{\sqrt{(x-2)(7-x)}} is$$
    Solution
    For $$f(x)$$ to be defined,
    $$(x-2)(7-x)> 0\Rightarrow (x-2)(x-7) < 0\Rightarrow 2< x<7$$
    Hence domain of $$f(x)$$ is $$(2,7)$$
  • Question 4
    1 / -0
    If the function is $$f:R\rightarrow R,  g:R\rightarrow R$$ are defined as $$f(x)=2x+3, g(x)=x^{2}+7$$  and  $$f[g(x)]=25$$  then  $$x=$$    
    Solution
    $$f(g(x))=f(x^{2}+7) =25$$
    $$=2(x^{2}+7)+3$$
    $$=2x^{2}+17$$
    $$\Rightarrow   2x^{2}=8$$
    $$x^{2}=4  \Rightarrow   x=\pm 2$$
  • Question 5
    1 / -0
    If $$f(x)=\dfrac{x+1}{x-1}(x\neq 1)$$ then $$fofofof(x)=$$
    Solution
    $$fofofof\left(x\right)=fofof\left(\dfrac{x+1}{x-1}\right)$$
    $$=fof\left(\dfrac{\dfrac{x+1}{x-1}+1}{\dfrac{x+1}{x-1}-1}\right)=fof\left(\dfrac{2x}{2}\right)$$
    $$=fof\left(x\right)$$
    $$=f\left(\dfrac{x+1}{x-1}\right)=x$$
  • Question 6
    1 / -0
    Let $$Z$$ be the set of integers and $$f:Z\rightarrow Z$$ is a bijective function then 
    Solution
    Let us check all the options one by one:
    Option A:
    $$f(x)=x^2+4$$
    Here, $$f(1) = 1^2 +4 = 1+4 = 5$$
    $$f(-1) = (-1)^2 +4 = 1+4 = 5 $$
    Thus, $$f(1) = f(-1)$$but $$1 \neq -1 $$
    So, it is not one - one and hence not a bijective function.

    Option B:
    $$f(x)=2x+3$$
    It is one - one but it is not onto, because for $$y=0, x=\frac{-3}{2}\notin Z$$
    Hence, not a bijective function.

    Option 3: 
    $$f(x)=x$$
    It is one - one & onto. So it is a bijective function.

    $$f(x)=x^3+3$$
    it is one - one but not onto, because for $$y=0, x\notin Z$$
    Hence, not a bijective function.
  • Question 7
    1 / -0
    If $$F(n)=(-1)^{k-1}(n-1), G(n)=n-F(n)$$ then $$ (GoG)(n)=$$ (where $$k$$ is odd)
    Solution
    $$G(n)=n-(-1)^{k-1}(n-1)$$
    $$GoG(n)=G(n-(-1)^{k-1}(n-1))$$
    $$=n-(-1)^{k-1}(n-1)-(-1)^{k-1}((n-1)-(-1)^{k-1}(n-1))$$
    $$=n-(n-1)$$
    $$=1$$
  • Question 8
    1 / -0
    If $$f(x)=\dfrac{x}{\sqrt{1-x^{2}}}$$, then $$ (fof)(x)=$$
    Solution
    $$fof\left ( x \right )=f\left ( f\left ( x \right ) \right )=\left ( x/\sqrt{1-x^{2}} \right )/\left ( \sqrt{1-\left ( x^{2}/\left ( 1-x^{2} \right ) \right )} \right )$$
    $$=\left ( x/\sqrt{1-x^{2}} \right )/\sqrt{\left ( 1-x^{2}-x^{2} \right )/\left ( 1-x^{2} \right )}$$
    $$=\left ( x/\sqrt{1-x^{2}} \right )/\left ( \sqrt{1-2 x^{2}} /\sqrt{1-x^{2}}\right)$$
    $$=x/\sqrt{1-2x^{2}}$$
  • Question 9
    1 / -0
    If $$f:R\rightarrow R$$ is defined by $$f(x)=x^{2}-10x+21 $$ then $$ f^{-1}(-3)$$ is
    Solution
    Let $$f^{-1}(-3)=t$$
    $$\Rightarrow f(t)=-3$$
    $$t^{2}-10t+21=-3$$
    $$t^{2}-10t+24=0$$
    $$t^{2}-6t-4t+24=0$$
    $$t(t-6)-4(t-6)=0$$
    $$\Rightarrow t=6,4 = f^{-1}(-3)$$
  • Question 10
    1 / -0
    If $$f:[1,\infty )\rightarrow B$$  defined  by the function $$ f(x)=x^{2}-2x+6$$ is a surjection, then $$B$$ is equals to
    Solution
    $$f(x)=x^2-2x+6$$ is a surjection.
    So the range of $$f(x)$$ will be equal to its codomain.
    $$f(x)=x^2-2x+6$$
    $$f^1(x)=2x-2$$
    $$=2(x-1)$$
    $$f(x)$$ will be increasing when $$x\geqslant 1$$.
    $$\therefore f(1)=1-2+6$$
    $$=5$$
    $$\therefore B=[5, \infty)$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now