Self Studies

Tangents and its Equations Test 1

Result Self Studies

Tangents and its Equations Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\left | f(x_{1})-f(x_{2}) \right |< (x_{1}-x_{2})^{2}$$ for all $$x_{1}$$ $$x_{2}$$ $$\in $$ R. Find the equation of tangent to the curve y = f(x) at the point (1, 2). 
    Solution
    As $$\left| f\left( { x }_{ 1 } \right) -f\left( { x }_{ 2 } \right)  \right| \le { \left( { x }_{ 1 }-{ x }_{ 2 } \right)  }^{ 2 },\forall { x }_{ 1 },{ x }_{ 2 }\in R$$
    $$\displaystyle\Rightarrow \left| f\left( { x }_{ 1 } \right) -f\left( { x }_{ 2 } \right)  \right| \le { \left| { x }_{ 1 }-{ x }_{ 2 } \right|  }^{ 2 }$$   $$\left( { x }^{ 2 }={ \left| x \right|  }^{ 2 } \right) $$
    $$\displaystyle \therefore \left| \frac { f\left( { x }_{ 1 } \right) -f\left( { x }_{ 2 } \right)  }{ { x }_{ 1 }-{ x }_{ 2 } }  \right| \le { \left| { x }_{ 1 }-{ x }_{ 2 } \right|  }\Rightarrow \lim _{ { x }_{ 1 }\rightarrow { x }_{ 2 } }{ \left| \frac { f\left( { x }_{ 1 } \right) -f\left( { x }_{ 2 } \right)  }{ { x }_{ 1 }-{ x }_{ 2 } }  \right|  } \le \lim _{ { x }_{ 1 }\rightarrow { x }_{ 2 } }{ \left| { x }_{ 1 }-{ x }_{ 2 } \right|  }$$
    $$\displaystyle\Rightarrow \left| f'\left( { x }_{ 1 } \right)  \right| \le 0,\forall { x }_{ 1 }\in R$$
    $$\therefore \left| f'\left( x \right)  \right| \le0$$, which showsw $$\left| f'\left( x \right)  \right| =0$$   (as modulus is non negative or $$\left| f'\left( x \right)  \right| \ge 0$$)
    $$\therefore f'\left( x \right)=0$$  or $$f\left( x \right)$$ is a constant function.
    $$\Rightarrow $$ Equation of tangent at $$\left( 1,2 \right) $$ is 
    $$\displaystyle \frac { y-2 }{ x-1 } =f'\left( x \right)$$ or $$y-2=0$$ [$$\because$$ as $$f'(x)=0$$]
    $$\Rightarrow y-2=0$$ is required equation of tangent.
  • Question 2
    1 / -0
    For the curve $$y=3  \sin \theta  \cos  \theta,  x= e^{\theta} \sin \theta,  0  \leq \theta  \leq  \pi$$, the tangent is parallel to x-axis when $$\theta$$ is :
    Solution
    $$y=3\sin { \theta  } \cos { \theta  } $$

    $$\Rightarrow \displaystyle\frac { dy }{ d\theta  } =3(\cos { \theta  } -\sin { \theta  } )(\cos { \theta  } +\sin { \theta  } )$$

    $$x={ e }^{ \theta  }\sin { \theta  } $$

    $$\displaystyle\frac { dx }{ d\theta  } =3{ e }^{ \theta  }(\cos { \theta  } -\sin { \theta  } )$$

    $$\displaystyle\frac { dy }{ dx} = 3{ e }^{ -\theta  }(\cos { \theta  } -\sin { \theta  })$$

    $$\displaystyle\frac { dy }{ dx} =0$$

    $$\Rightarrow \sin { \theta  } =\cos { \theta  } $$

    $$\Rightarrow \displaystyle \theta = \frac{\pi}{4}$$
  • Question 3
    1 / -0
    If the tangent to the curve $$y=\cfrac { x }{ { x }^{ 2 }-3 } ,x\in R,\left( x\neq \pm \sqrt { 3 }  \right) $$, at a point $$\left( \alpha ,\beta  \right) \neq \left( 0,0 \right) $$ on it is parallel to the line $$2x+6y-11=0$$, then:
  • Question 4
    1 / -0
    The tangent to the curve $$y  =x^2 - 5x + 5$$, parallel to the line $$2y = 4x + 1$$, also passes through the point
    Solution

  • Question 5
    1 / -0
    The tangent at the point $$(2, -2)$$ to the curve, $$x^2y^2-2x=4(1-y)$$ does not pass through the point.
    Solution
    $$x^2y^2-2x=4-4y$$
    $$2xy^2+2y\cdot x^2\cdot\displaystyle\frac{dy}{dx}-2=-4\cdot\frac{dy}{dx}$$
    $$\displaystyle\frac{dy}{dx}(2y\cdot x^2+4)=2-2x\cdot y^2$$
    $$\left.\displaystyle\frac{dy}{dx}\right|_{2, -2}=\displaystyle\frac{2-2\times 2\times 4}{2(-2)\times 4+4}=\frac{+14}{+12}=\frac{7}{6}$$
     eq of tangent :$$(y+2)=\displaystyle\frac{7}{6}(x-2)\Rightarrow 7x-6y=26$$.
    $$(-2,-7)$$ does not satisfy above eq.
  • Question 6
    1 / -0
    The normal to the curve $$y(x-2)(x-3)=x+6$$ at the point where the curve intersects the y-axis passes through the point.
    Solution
    $$\textbf{Step - 1 : Find derivative of the curve}$$
                        $$y(x-2)(x-3)=x+6$$
                        $$y=\dfrac{x+6}{(x-2)(x-3)}$$

                        $$\text{Differentiating both sides w.r.t x}$$
                        $$\dfrac{dy}{dx}=\dfrac{(x^2-5x+6)(1)-(x+6)(2x-5)}{(x^2-5x+6)^2}$$

                        $$\dfrac{dy}{dx}=\dfrac{-x^2-12x+36}{(x^2-5x+6)^2}$$

                        $$\text{At x = 0, we get y = 1}$$
                        $$\dfrac{dy}{dx}=1 \text{ at } (0,1)$$

    $$\textbf{Step - 2 : Find equation of normal}$$
                        $$\text{Slope of tangent at (0,1) is 1}$$
                        $$\therefore \text{Slope of normal at (0,1) is } \dfrac{-1}{\text{slope of tangent}}$$
                        $$\therefore \text{Slope of normal at (0,1) is -1}$$
                        $$\text{Equation of normal is given by : - }$$
                        $$y-1=(-1)(x-0)$$
                        $$y+x=1$$

    $$\textbf{Step - 3 : Finding from the options which point satisfies the above equation of normal}$$
                       $$\text{ Putting } (\dfrac{1}{2},\dfrac{1}{2}) \text{ in } x+y=1 $$
                       $$\text{The above point satisfies the equation of normal}$$

    $$\textbf{Hence the answer is Option B}$$

  • Question 7
    1 / -0
    The normal to the curve $$x = a (\cos\theta +\theta \sin \theta ), y = a (\sin \theta -\theta \cos\theta )$$  at any point $$\theta $$ is such that 
    Solution
    Clearly $$\displaystyle \frac{\mathrm{d}\mathrm{y}}{\mathrm{d}\mathrm{x}}=\tan\theta =$$ slope of normal $$=-\cot\theta$$
    Equation of normal at $$\theta$$' is $$
    \mathrm{y}-\mathrm{a}(\sin\theta -\theta \cos\theta)=-\cot\theta(\mathrm{x}-\mathrm{a}(\cos\theta +\theta \sin\theta)$$
    $$=$$ $$y\sin{\theta}-a\sin^{2}\theta +a\theta \cos\theta \sin\theta =-\mathrm{x}\cos\theta +a\cos^{2}\theta +a\theta \sin\theta \cos\theta$$
    $$= x\cos{\theta} + y\sin{\theta} =a$$
    Clearly this is an equation of straight line which is at a constant distance $$a$$ from origin. 
  • Question 8
    1 / -0
    If the tangent at $$(1, 7)$$ to the curve $$x^{2} = y - 6$$ touches the circle $$x^{2} + y^{2} + 16x + 12y + c = 0$$ then the value of $$c$$ is
    Solution
    Given equation of curve is $$x^{2}=y-6$$

    $$\Rightarrow y=x^{2}+6$$

    $$\Rightarrow \dfrac{dy}{dx}=2x$$

    Slope of tangent is $$m=\left|\dfrac{dy}{dx}\right|_{(1,7)}=2\times 1=2$$

    Equation of tangent at the point $$(1,7)$$ is given by

    $$(y-7)=2(x-1)$$

    $$\Rightarrow y-7=2x-2$$

    $$\Rightarrow 2x-y+5=0$$

    Given equation of circle is 

    $$x^{2} + y^{2} + 16x + 12y + c = 0$$

    $$\Rightarrow (x+8)^{2}+(y+6)^{2}+c-64-36=0$$

    $$\Rightarrow (x+8)^{2}+(y+6)^{2}=100-c$$

    If the tangent touches the circle, then

    Distance from centre $$=$$ radius

    $$\Rightarrow $$ Distance of $$(-8,-6)$$ from $$2x-y+5=0$$ is the radius

    $$d=\left|\dfrac{2(-8)-(-6)}{\sqrt{4+1}}\right|=\left|\sqrt{5}\right|$$

    $$\Rightarrow Radius=\sqrt{100-c}=\sqrt{5}$$

    $$\Rightarrow c={95}$$
  • Question 9
    1 / -0
    If the tangent to the conic, $$y - 6 = x^2$$ at (2, 10) touches the circle, $$x^2 + y^2 + 8x - 2y = k$$ (for some fixed k) at a point $$(\alpha, \beta)$$; then $$(\alpha, \beta)$$ is;
    Solution
    Given equation of conic is
    $$y - 6 = x^2$$ 
    $$\dfrac{dy}{dx}=2x$$
    Slope of tangent at $$(2,10)$$ is $$4.$$

    Equation of tangent to conic is 
    $$y-10=4(x-2)$$
    $$\Rightarrow y-10=4x-8$$
    $$\Rightarrow y=4x+2$$          .....(1)

    Given equation of circle is 
    $$x^{ 2 }+y^{ 2 }+8x-2y=k$$
    $$\Rightarrow (x+4)^2+(y-1)^2=k+17$$

    Given $$(\alpha, \beta)$$ is a point of tangency for fixed $$k$$
    Radius = Length of tangent from center $$(-4,1)$$
    $$\Rightarrow \sqrt{k+17}=\dfrac{15}{\sqrt{17}}$$
    $$\Rightarrow k+17=\dfrac{225}{17}$$

    So, equation of circle at $$(\alpha, \beta)$$ is 
    $$(\alpha+4)^2+(\beta-1)^2=\dfrac{225}{17}$$

    Now, eqn (1) is tangent to the circle for fixed $$k$$ at $$(\alpha,\beta)$$
    $$\Rightarrow (\alpha+4)^2+(4\alpha+1)^2=\dfrac{225}{17}$$
    $$\Rightarrow 17\alpha^2+16\alpha+17=\dfrac{225}{17}$$
    $$\Rightarrow 289\alpha^2+272\alpha+64=0$$
    $$\Rightarrow \alpha =\dfrac{-8}{17}$$  (Here $$D=0$$)

    So, by (1), $$\beta =\dfrac{2}{17}$$
  • Question 10
    1 / -0
    The intercepts on $$x$$-axis made by tangents to the curve, $$y=\int_{0}^{x}|t|$$ dt, $$x\in R$$, which are parallel to the line $$y=2x$$, are equal to

    Solution
    $$\dfrac{dy}{dx}=|x|=2\Rightarrow  x=\pm 2\Rightarrow  y=\int_{0}^{2}|t|$$ dt $$=2$$ for $$x=2$$
    and $$y=\int_{0}^{-2}|t|$$ dt $$=-2$$ for $$x=-2$$
    Hence the equations of the tangents are
    $$y-2=2(x-2) \Rightarrow  y=2x-2$$
    and $$y+2=2(x+2) \Rightarrow  y=2x+2$$
    Putting $$y=0$$, we get $$x=1$$ and $$-1$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now