Self Studies

Tangents and its Equations Test 11

Result Self Studies

Tangents and its Equations Test 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    lf the chord joining the points where $$x= p,\ x =q$$ on the curve $$y=ax^{2}+bx+c$$ is parallel to the tangent drawn to the curve at $$(\alpha, \beta)$$ then $$\alpha=$$
    Solution
    $$y'=2ax+b$$
    $$y'|_{x=b}=(2a\alpha +b)$$
    $$2a\alpha+b=\left ( \dfrac{y_{2}-y_{1}}{x_{2}-x_{1}} \right )$$
    $$2a\alpha+b=\dfrac{ap^{2}+bp-aq^{2}-bq}{(p-q)}$$
    $$=\dfrac{a(p-q)(p+q)+b(p-a)}{(p-q)}$$
    $$2a\alpha+b=a(p+q)+b$$
    $$\alpha=\left ( \dfrac{p+q}{2} \right )$$
  • Question 2
    1 / -0
    The arrangement of the following curves in the ascending order of slopes of their tangents at the given points.
    $$A) \displaystyle y=\frac{1}{1+x^{2}}$$ at $$x=0$$

    $$B) y=2e^{\frac{-x}{4}},$$ where it cuts the y-axis
    $$C) y= cos(x)$$ at $$\displaystyle x=\frac{-\pi}{4}$$
    $$D) y=4x^{2}$$ at $$x=-1$$
    Solution
    (A) $$y^{1}=-\frac{2x}{(1+x^{2})}$$
    $$y^{1}|_{x=0}=0$$

    (B) $$y^{1}=-\frac{2x}{(4}$$
    $$y^{1}|_{x=0}=-\frac{1}{2}$$

    (C) $$y^{1}=-sin\ x$$
    $$y^{1}|_{x=^{-pi}/_4}=\frac{1}{\sqrt{2}}$$

    (D) $$y^{1}=8x$$
    $$y^{1}|_{x=-1}=-8$$

    $$(C)>(A)>(B)>(D)$$
  • Question 3
    1 / -0
    Observe the following lists for the curve $$y=6+x-x^{2}$$ with the slopes of tangents at the given points; I, II, III, IV
    Point
    Tangent slope
    I: $$(1, 6)$$
    a) $$3$$
    II: $$(2, 4)$$
    b) $$5$$
    III: $$(-1, 4)$$
    c) $$-1$$
    IV: $$(-2, 0)$$
    d) $$-3$$
    Solution
    $$y^{'}=\ \ \ 1-2x$$
    (A) $$m_{1}=-1$$
    (B) $$m_{2}=-3$$
    (C) $$m_{3}=3$$
    (D) $$m_{4}=5$$
  • Question 4
    1 / -0
    lf the tangent to the curve $$2y^{3}=ax^{2}+x^{3}$$ at the point $$(a,\ a)$$ cuts off intercepts $$\alpha$$ and $$\beta$$ on the coordinate axes such that $$\alpha^{2}+\beta^{2}=61$$, then $$a$$ is equal to
    Solution
    $$2\times 3\times y^{2}y'=2ax+3x^{2}$$
    $$y' = \dfrac{2ax+3x^2}{6y^2}$$
    $$m = \left.y'\right|_{(a,a)}=\dfrac{5}{6}$$

    Equation of the tangent at $$(a,a)$$ with slope, $$m = \dfrac56$$
    $$(y-a)=\dfrac{5}{6}(x-a)$$

    Intersection points with coordinate axes are, $$\left(0,\dfrac{a}{6}\right)$$ and $$\left(-\dfrac{a}{5},0\right)$$
    So, $$\alpha = \dfrac a6$$ and $$\beta = -\dfrac a5$$
    Given that,
    $${\alpha}^2 + {\beta}^2 = 61$$

    $$\Rightarrow \dfrac{a^2}{36} + \dfrac{a^2}{25} = 61$$

    $$\Rightarrow a^2 = {30}^2$$
    $$\Rightarrow a = \pm 30$$
  • Question 5
    1 / -0
    Match List-I with List-II and select the correct answer using the code given below. A B C D
    List-I
    List-II
    a) Equation of tangent to the curve $$y=be^{-x/a}$$ at $$x=0$$

    1) $$x-2y=2$$


    b) Equation of tangent to the curve $$y=x^{2}+1$$ at $$(1, 2)$$
    2) $$y = 2x$$
    c) Equation of normal to the curve $$y=2x-x^{2}$$at $$(2, 0)$$

    3) $$x-y =\pi$$


    d) Equation of normal to the curve $$y= \sin x$$ at $$x=\pi $$
    4) $$ \displaystyle {\frac{x}{a}+\frac{y}{b}=1} $$

    Solution
    (A) $$\displaystyle y'=\frac{-b}{a}e^{-x/a}$$
    $$\displaystyle m=-\frac{b}{a}$$
    $$\displaystyle (y-b)=\frac{-b}{a}(x-0)$$
    $$\displaystyle \frac{x}{a}+\frac{y}{b}=1$$

    (B) $$y'=2x$$
    $$y'|_{x=1}=2$$
    $$(y-2)=2(x-1)$$
    $$y=2x$$

    (C) $$y'=2-2x$$
    $$y'|_{x=2}=-2$$
    Slope of normal $$\displaystyle =\frac{1}{2}$$
    $$\displaystyle (y-0)=\frac{1}{2}(x-2)$$
    $$2y=x-2$$

    (D) $$y'=\cos x$$
    $$y'|_{x={\pi}}=-1$$
    Slope of normal =1
    $$(y-0)=1(x-\pi)$$
    $$x-y=\pi$$
  • Question 6
    1 / -0
    Area of the triangle formed by the tangent, normal at $$(1, 1)$$ on the curve $$\sqrt{x}+\sqrt{y}=2$$ and the y axis is (in sq. units)
    Solution
    $$\dfrac{1}{\sqrt{x}}+\dfrac{y^{1}}{\sqrt{y}}=0$$
    $$y'=-\sqrt{\dfrac{y}{x}}$$
    $$y'=-1\ \ at\ (n=1,\ y=1)$$
    $$(y-1)=-1(x-1)$$
    $$y=2$$
    $$(y-1)=1(x-1)$$
    $$y=0$$
    $$Area=\dfrac{1}{2}\times 2 \times 1$$
    $$=1$$
  • Question 7
    1 / -0
    Assertion (A): The points on the curve $$y=x^{3}-3x$$ at which the tangent is parallel to $$x$$-axis are $$(1, -2)$$ and $$(-1, 2).$$
    Reason (R): The tangent at $$(x_{1}, y_{1})$$ on the curve $$y=f(x)$$ is vertical then $$\displaystyle \frac{dy}{dx}$$ at $$(x_{1}, y_{1})$$ is not defined.
    Solution
    $$y'=3x^{2}-3$$
    $$y'=0$$
    $$\therefore$$ tangent is parallel to x-axis
    $$x^{2}=1$$
    $$x  =^+_-1$$
    $$y=-2$$
    $$y=2$$
    y tangent is vertical then $$\dfrac{dy}{dx}$$ is not defined.
  • Question 8
    1 / -0
    lf the tangent to the curve $$f(x)=x^{2}$$ at any point $$(c, f(c))$$ is parallel to the line joining points $$(a, f(a))$$ and $$(b,f(b))$$ on the curvel then $$a,\ c,\ b$$ are in
    Solution
    $$\partial^{'}M=2s$$ at $$(c,\ \partial(c))=2c$$
    $$\dfrac{\partial(a)-\partial(L)}{a-b}=2c$$
    $$\dfrac{a^{2}=b^{2}}{a-b}=2c$$
    $$a+b=2c$$
    $$\therefore\ a,c,b$$ are in AP
  • Question 9
    1 / -0
    I. lf the curve $$y=x^{2}+ bx +c$$ touches the straight line $$y=x$$ at the point $$(1, 1)$$ then $$b$$ and $$c$$ are given by $$1, 1.$$
    II. lf the line $$Px+ my +n=0$$ is a normal to the curve $$xy=1$$, then $$P> 0,\ m <0$$.
    Which of the above statements is correct
    Solution
    (I) $$1+b+c=1$$
    $$b+c=0$$
    $$y'=2x+b$$
    $$y'=1$$
    $$2+b=1$$
    $$(b=-1)$$
    $$c=1$$
    (II) $$y'=-\dfrac{1}{x^{2}}$$
    $$m=-\dfrac{1}{x^{2}}$$
    $$-\dfrac{P}{m}=\dfrac{x^{2}}{x}$$
    $$-P=x^{2}m$$
    p and m will be of opposite num.
  • Question 10
    1 / -0
    lf the parametric equation of a curve given by $$x=e^{t}\cos t,\ y=e^{t}\sin t$$, then the tangent to the curve at the point $$t=\dfrac{\pi}{4}$$ makes with axis of $$x$$ the angle.
    Solution
    $$at\ t={\pi}/{4}$$
    $$y=e^{t}sint$$
    $$\dfrac{dy}{dl}=e^{t}(sin\ t+cos\ t)$$
    $$\dfrac{dx}{dl}=d^{t}(cos\ t+sin\ t)$$
    $$\dfrac{dy}{dx}=\dfrac{sin \ t+cos\ t}{cos\ t-sin\ t}$$
    $$= \alpha$$
    $$\therefore tan^{-1}(\infty)={\pi}/{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now