Self Studies

Tangents and its Equations Test 12

Result Self Studies

Tangents and its Equations Test 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    At origin the curve  $$y^{2}=x^{3}+x$$
    Solution
    $$\dfrac{dy}{dx}=\dfrac{3x^{2}+1}{2y}$$

    At origin $$x=0,y=0$$

    $$\tan\ \theta=\infty$$

    $$\theta =\dfrac{\pi}{2}$$

    $$\therefore$$ Curve touches the y-axis
  • Question 2
    1 / -0
    Observe the following statements
    I: If $$p$$ and $$q$$ are the lengths of perpendiculars from the origin on the tangent and normal at any point on the curve $$x^{\frac{2}{3}}+y^{\frac{2}{3}}=1$$ then $$4p^{2}+q^{2}=1$$.
    II: If the tangent at any point $$P$$ on the curve $$x^{3}.y^{2}=a^{5}$$ cuts the coordinate axes at $$A$$ and $$B$$ then $$AP : PB = 3 : 2$$
    Solution
    $$x=a\ \cos^{3}\theta$$
    $$y=a\ \sin^{3}\theta$$
    $$y'=-\tan\ \theta$$
    $$(y-sin^{3}\theta)=-\tan\ \theta(x-\cos^{3}\theta)$$
    $$y+n\ \tan\ \theta-\tan\ \theta\ \cos^{3}\theta-\sin^{3}\theta=0$$
    Perpendicular from origin
    $$\left | \dfrac{\tan\ \theta\ \cos^{3}\theta+\sin^{3}\theta}{\sqrt{1+\tan^{2}\theta}} \right |=p$$
    $$p_{2}\ \ \sin\ \theta\ \cos\ \theta$$
    $$p=\dfrac{\sin^{2}\theta}{2}$$
    $$(y-\sin 3\theta)=\frac{1}{\tan\ \theta}(x-\cos3\theta)$$
    $$y\ \tan\ \theta-\sin3\theta\ \tan\ \theta-x+\cos3\ \theta=0$$
    Perpendicular frm the origin
    $$\left | \dfrac{\cos3\theta-\sin3\theta\ \tan\ \theta}{\sqrt{1+\tan^{2}\theta}} \right |=q$$
    $$q=\cos2\theta$$
    $$4p^{2}+q^{2}=1$$
  • Question 3
    1 / -0
    Observe the following statements for the curve $$x
    = at^{3}$$, $$y = at^{4}$$ at $$t = 1$$.
    I : The equation of the tangent to the curve is $$4x-3y- a = 0$$
    II : The equation of the normal to the curve is $$3x +4y-  7a = 0$$
    III: Angle between tangent and normal at any point on the curve is $$\displaystyle \frac{\pi}{2}$$
    Which of the above statements are correct.
    Solution
    $$\dfrac{dy}{dx}=\dfrac{4at^{3}}{3at^{2}}$$
    $$\dfrac{dy}{dx}=\dfrac{4t}{3}$$
    $$\dfrac{dy}{dx}|_{t=1}=\dfrac{4}{3}$$
    $$(y-a)=\dfrac{4}{3}(x-a)$$ (tangent)
    $$4x-3y-a=0$$
    $$(y-a)=-\dfrac{3}{4}(x-a)$$ (Normal)
    $$4y+3x-7a=0$$
    Tangent and normal are always at an angle of $${\pi}/{2}$$ to each other
  • Question 4
    1 / -0
    Assertion (A): The normal to the curve $$ay^{2}=x^{3}(a\neq 0, x\neq 0)$$ at a point $$(x, y)$$ on it makes equal intercepts on the axes, then $$\displaystyle x=\frac{4a}{9}$$.
    Reason (R): The normal at $$(x_{1}, y_{1})$$ on the curve $$y=f(x)$$ makes equal intercepts on the coordinate axes, then $$\left.\displaystyle \frac{dy} {dx}\right|_{(x_{1},y_{1})}=1$$
    Solution
    $$ay^{2}=x^{3}$$
    $$2ay\dfrac{dy}{dx}=3x^{2}\Rightarrow\dfrac{dy}{dx}=\dfrac{3x^{2}}{2ay}$$
    Now, slope of normal 
    $$= -\dfrac{dx}{dy}=-\dfrac{2ay}{3x^{2}}=-\dfrac{2a\times x^{\frac{3}{2}}}{3x^{2}\sqrt{a}}=-\dfrac{2\sqrt{a}}{3\sqrt{x}}$$
    For the normal to make equal intercepts on the axes, the slope has to be $$\pm1$$.
    Hence, $$\dfrac{-2\sqrt{a}}{3\sqrt{x}}=\pm1$$
    On squaring both sides,
    $$\dfrac{4a}{9x}=1\Rightarrow x=\dfrac{4a}{9}$$.
  • Question 5
    1 / -0
    Assertion(A): If the tangent at any point $$P$$ on the curve $$xy = a^{2}$$ meets the axes at $$A$$ and $$B$$ then $$AP : PB = 1 : 1$$
    Reason(R): The tangent at $$P(x, y)$$ on the curve $$X^{m}.Y^{n}=a^{m+n}$$ meets the axes at $$A$$ and $$B$$. Then the ratio of $$P$$ divides $$\overline{AB}$$ is $$n : m$$.
    Solution
    $$y=\dfrac{a^{2}}{x}$$
    $$y'=-\dfrac{a^{2}}{x^{2}}$$
    $$y'=-\dfrac{a^{2}}{t^{2}}$$
    $$\left ( y-\dfrac{a^{2}}{t} \right )=\dfrac{-a^{2}}{t^{2}}(n-t)$$
    $$B=(2+10)$$
    $$A=\left ( 0,\ \dfrac{2a^{2}}{t} \right )$$
    $$\dfrac{AP}{BP}=1$$
  • Question 6
    1 / -0
    The point of intersection of the tangents drawn to the curve $$x^{2}y=1-y$$ at the points where it is met by the curve $$xy=1-y$$ is given by
    Solution
    $$x^{2}y=xy$$
    $$y=1,\ x=0$$
    $$y=^{1}/_{2},\ x=1$$
    $$2x\dfrac{dx}{dy}=-\dfrac{-1}{y^{2}}$$
    $$\dfrac{dy}{dx}=-2xy^{2}$$
    $$(x=0)$$
    $$\dfrac{dy}{dx}=0$$
    $$(y-1)=x-0$$
    $$y=1$$ ------- (1)
    $$\left ( y-\dfrac{1}{2} \right )=\dfrac{-1}{2}(x-1)$$ -----(2)
    $$x=0$$ (By (1) & (2))
    $$(0, 1)$$
  • Question 7
    1 / -0
    The number of tangents to the curve $$x^{3/2}+y^{3/2}=a^{3/2}$$, where the tangents are equally inclined to the axes, is
    Solution
    $$\dfrac{dy}{dx}=-1$$ (where x is equally inclined)
    $$\dfrac{3}{2}x^{^{1}/_{2}}+^{3}/_{2}y^{^{1}/_{2}}\dfrac{dy}{dx}=0$$
    $$\dfrac{dy}{dx}=-\sqrt{\dfrac{x}{y}}=1$$
    $$-\sqrt{\dfrac{x}{y}}=-1$$
    $$\sqrt{x}=\sqrt{y}$$
    $$x=y$$
    $$x^{^{3}/_{2}}+x^{^{3}/_{2}}=a^{^{3}/_{2}}$$
    $$2x^{^{3}/_{2}}=a^{^{3}/_{2}}$$
    $$x=\dfrac{a}{2^{^{2}/_{3}}}$$
    $$y=\dfrac{a}{2^{^{2}/_{3}}}$$
    $$\therefore$$ only one tangent.
  • Question 8
    1 / -0
    The points on the hyperbola $$x^{2}-y^{2}=2$$ closest to the point (0, 1) are
    Solution
    Let point be $$(\sqrt 2 sec\theta,\sqrt 2 tan\theta)$$ closest to (0, 1)
    So distance $$=\sqrt {2 sec^2\theta+(\sqrt 2 tan\theta-1)^2}$$
    $$=\sqrt {2 sec^2\theta+2tan^2\theta-2\sqrt 2 tan\theta+1}$$
    $$=\sqrt {4 tan^2\theta-2\sqrt 2 tan\theta+3}$$
    $$=2\sqrt {tan^2\theta-\frac {tan\theta}{\sqrt 2}+\frac {3}{4}}$$
    $$=2\sqrt {(tan\theta-\frac {1}{2\sqrt 2})^2+\frac {3}{4}-\frac {1}{8}}$$
    So distance is min when $$tan\theta=\frac {1}{2\sqrt 2}$$
    $$sec\theta=\pm \frac {3}{2\sqrt 2}$$
  • Question 9
    1 / -0
    If the circle $$x^2 + y^2 + 2gx + 2fy + c =0$$ is touched by y = x at P in the first quadrant, such that $$OP = 6 \sqrt2$$, then the value of $$c$$ is
    Solution
    Let the point of contact be $$x_{1},y_{1}$$
    However it lies on the line $$y=x$$
    Hence
    $$x_{1}=y_{1}$$
    Applying distance formula, we get
    $$\sqrt{x_{1}^2+x_{1}^2}=6\sqrt{2}$$
    $$2x_{1}^2=72$$
    $$x_{1}=6$$ ...(positive, since it lies on y=x.)
    Differentiating the equation of circle with respect to x.
    $$2x+2yy'+2g+2fy'=0$$
    Now $$y'=1$$ since $$y'$$ is the slope of the line $$y=x$$.
    By substituting, we get
    $$x+y=-(g+f)$$
    Now $$x_{1}=y_{1}=6$$
    Hence
    $$12=-(g+f)$$ ...(i)
    Substituting $$x=y=6$$ in the equation of the circle, we get
    $$36+36+2(6)(g+f)+c=0$$
    $$72+12(-12)+c=0$$
    $$c=144-72$$
    $$c=72$$
  • Question 10
    1 / -0
    lf the curve $$y=px^{2}+qx+r$$ passes through the point (1, 2) and the line $$y=x$$ touches it at the origin, then the values of $$p,\ q$$ and $$r$$ are
    Solution
    $$2=p+q+r$$
    $$r=0$$
    $$\dfrac{dx}{dy}|_{x=0}=1$$
    $$\dfrac{dy}{dx}=2px+q$$
    $$q=1$$
    $$2=p+1+0$$
    $$p=1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now