Self Studies

Tangents and its Equations Test 17

Result Self Studies

Tangents and its Equations Test 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the tangent to the curve $$\sqrt{x}+\sqrt{y}=\sqrt{a}$$ at any points on it cuts the axes $$OX$$ and $$OY$$ at $$P$$ and $$Q$$ respectively then $$OP+OQ$$ is
    Solution
    Let point $$\left( p,q \right) $$ lies on curve $$\sqrt { x } +\sqrt { y } =\sqrt { a } $$
    therefore $$\sqrt { p } +\sqrt { q } =\sqrt { a } $$
    Now slope $$\cfrac { dy }{ dx } =-\sqrt { \cfrac { p }{ q }  } $$
    Equation of tangent is $$y-q=-\sqrt { \cfrac { p }{ q }  } (x-p)$$
    X intercept = OP = $$\sqrt { p } (\sqrt { p } +\sqrt { q } )$$
    Y intercept = OQ = $$\sqrt { q } (\sqrt { p } +\sqrt { q } )$$
    Hence,
    OP+OQ $$=\sqrt { a } \sqrt { a } =a$$
  • Question 2
    1 / -0
    The curve $$\displaystyle \frac{x^{n}}{a^{n}}+\frac{y^{n}}{b^{n}}=2$$ touches the line $$\displaystyle \frac{x}{a}+\frac{y}{b}=2$$ at the point
    Solution
    Slope of curve$$\cfrac { { x }^{ n } }{ { a }^{ n } } +\cfrac { { y }^{ n } }{ { b }^{ n } } =2$$ is 
    $$\cfrac { dy }{ dx } =-\cfrac { { b }^{ n } }{ { a }^{ n } } \cfrac { { x }^{ n-1 } }{ { y }^{ n-1 } } $$
    Slope of tangent $$\cfrac { { x } }{ { a } } +\cfrac { { y } }{ { b } } =2$$ is
    $$\cfrac { dy }{ dx } =-\cfrac { { b } }{ { a } } $$
    Equating both slopes, we get
    $$-\cfrac { { b }^{ n } }{ { a }^{ n } } \cfrac { { x }^{ n-1 } }{ { y }^{ n-1 } } =-\cfrac { { b } }{ { a } } $$
    Only $$x=a\quad y=b$$ satisfy the above equation.
    Hence, option 'B' is correct.

  • Question 3
    1 / -0
    The equation of tangent to the curve $$y=be^{-x/a}$$ where it cuts the $$y$$-axis is
    Solution
    Let the point be $$\left( 0,k \right) $$
    Substituting this in equation of curve $$y=b{ e }^{ -\cfrac { x }{ a }  }$$
    we get $$k=b$$ so point is $$\left( 0,b \right) $$
    Slope $$\cfrac { dy }{ dx } =-\cfrac { b }{ a } $$
    And equation of curve is 
    $$y-b=-\cfrac { b }{ a } (x-0)\\ \cfrac { x }{ a } +\cfrac { y }{ b } =1$$

  • Question 4
    1 / -0
    The normal to the curve $$2x^{2}+y^{2}=12$$ at the point $$(2, 2)$$ cuts the curve again at
    Solution
    For curve $$2{ x }^{ 2 }+{ y }^{ 2 }=12$$
    Slope of normal is $$-\cfrac { dx }{ dy } =\cfrac { 2y }{ 4x } =\cfrac { 1 }{ 2 } $$
    And equation of normal is 
    $$y-2=\cfrac { 1 }{ 2 } (x-2)\\ 2y-x=2$$
    Solving it with equation of curve, we get 
    $$y=2$$ and $$y=-\cfrac { 2 }{ 9 } $$
    Which gives 
    $$x=2$$ and $$x=-\cfrac { 22 }{ 9 } $$
    Hence coordinate of other point is 
    $$\left( -\cfrac { 22 }{ 9 } ,-\cfrac { 2 }{ 9 }  \right) $$
    Hence, option 'A' is correct.
  • Question 5
    1 / -0
    The area bounded by the axes of reference and the normal to $$y=\log_{e}x$$ at the point $$(1, 0)$$ is
    Solution
    For curve $$y=\log _{ e }{ x } $$
    Slope of normal at point $$(1,0)$$ is 
    $$-\cfrac { dx }{ dy } =-x=-1$$
    Equation of normal is 
    $$y-0=-1(x-1)\\ x+y=1$$
    Therefore X intercept is $$\\ X=1$$
    And Y intercept is $$Y=1$$
    Hence area $$=\cfrac { 1 }{ 2 } \times 1\times 1=\cfrac { 1 }{ 2 } $$
  • Question 6
    1 / -0
    If the line joining the points $$(0, 3)$$ and $$(5, -2)$$ is the tangent to the curve $$\displaystyle y=\frac{c}{x+1}$$ then the value of $$c$$ is
    Solution
    Slop of line joining the points $$(0,3)\quad and\quad (5,2)$$ is given by 
    $$\dfrac { 3+2 }{ 0-5 } =-1$$

    This is equal to the slop of tangent on the curve and that is given by 

    $$\dfrac { dy }{ dx } =\dfrac { -c }{ { \left( x+1 \right)  }^{ 2 } } \\ \dfrac { dy }{ dx } =-1\\ \Rightarrow c={ \left( x+1 \right)  }^{ 2 }...................(1)$$\

    Equation of line joining the points $$(0,3)\quad and\quad (5,2)$$ is given by

    $$(y-3)=-1(x-0)$$

    Solving equation of tangent and the curve for point of intersection

    $$\dfrac { c }{ x+1 } +x=3$$.............(2)

    Solving (1) and (2)

    $$x=1$$

    Putting this in (2), we get c=4
  • Question 7
    1 / -0
    The sum of the intercepts made on the axes of coordinates by any tangent to the curve $$\sqrt{x}+\sqrt{y}=2$$ is equal to
    Solution
    Let point $$\left( p,q \right) $$ lies on the curve $$\sqrt { x } +\sqrt { y } =2$$ , such that $$\sqrt { p } +\sqrt { q } =2$$
    Slope is $$\cfrac { dy }{ dx } =-\sqrt { \cfrac { p }{ q }  } $$
    And equation of tangent is $$y-q=-\sqrt { \cfrac { p }{ q }  } (x-p)$$
    Therefore X intercept is $$\sqrt { p } \left( \sqrt { p } +\sqrt { q }  \right) $$
    abd Y intercept is $$\sqrt { q } \left( \sqrt { p } +\sqrt { q }  \right) $$
    Hence sum of intercept is $$\sqrt { p } \left( \sqrt { p } +\sqrt { q }  \right) +\sqrt { q } \left( \sqrt { p } +\sqrt { q }  \right) \\ =2\left( \sqrt { p } +\sqrt { q }  \right) =4$$
  • Question 8
    1 / -0
    The triangle formed by the tangent to the curve $$\displaystyle f(x)=x^{2}+bx-b$$ at the point $$(1, 1)$$ and the coordinates axes, lies in the first quadrant. If its area is $$2$$ then the value of b is
    Solution
    $$f'(x) = 2x+b$$
    $$\Rightarrow m = 2+b$$
    So equation of tangent at $$(1,1)$$ is
    $$(y-1) = (b+2)(x-1)$$
    intercept on the axes are $$(b+1)/(b+2)$$ and $$-(b+1)$$
    $$\Rightarrow \mid -\dfrac{1}{2}\dfrac{(b+1)}{(b+2)} (b+1)\mid = 2$$
    '$$\Rightarrow \mid \dfrac{(b+1)^2}{b+2}\mid = 4$$
    $$\Rightarrow b = -3 $$ is only solution
  • Question 9
    1 / -0
    Angle between the tangents to the curve $$y= x^{2}-5x+6$$ at the points $$(2,0)$$ and $$\left ( 3,0 \right )$$ is
    Solution
    Given equation of curve $$\displaystyle y=x^{2}-5x+6$$ 

    $$\displaystyle \Rightarrow \frac{dy}{dx}=2x-5$$

    Slope of tangent to the curve at $$(2,0)$$ is 

    $$\displaystyle \left(\frac{dy}{dx}\right)_{(2,0)}=2(2)-5=-1=m_{1}$$

    Slope of tangent to the curve at $$(3,0)$$ is 

    $$\displaystyle \left(\frac{dy}{dx}\right)_{(3,0)}=2(3)-5=1=m_{2}$$ 

    Since $$\displaystyle m_{1}m_{2}=-1$$

    $$\therefore $$ Angle between the tangents to the curve at $$(2,0)$$ and $$(3, 0)$$ is $$\displaystyle \dfrac{\pi}{2}$$
  • Question 10
    1 / -0
    The number of tangents to the curve $$\displaystyle y= e^{\left | x \right |}$$ at the point $$(0,1)$$ is
    Solution
    For $$x>0$$,
    $$y=e^{x}$$.
    $$\dfrac{dy}{dx}=e^{x}$$.
    Now 
    $$\dfrac{dy}{dx}_{x=0}=1$$.
    Hence
    $$y-1=1(x-0)$$
    Or 
    $$x-y+1=0$$ is the required equation of tangent.
    Similarly for $$x<0$$
    $$y=e^{-x}$$.
    $$\dfrac{dy}{dx}=-e^{-x}$$.
    Now 
    $$\dfrac{dy}{dx}_{x=0}=-1$$.
    Hence
    $$y-1=-1(x-0)$$
    Or 
    $$x+y-1=0$$ is the required equation of tangent.
    Hence at $$x=0$$ we will have 2 tangents to the curve $$y=e^{|x|}$$  which are mutually perpendicular.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now