Self Studies

Tangents and its Equations Test 19

Result Self Studies

Tangents and its Equations Test 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the points on the curve $$y=x^{3}$$, the tangents at which are inclined at an angle of $$60^{\circ}$$ to x-axis.
    Solution
    Hence slope of tangents
    $$=tan60^{0}$$
    $$=\sqrt{3}$$
    $$=\dfrac{dy}{dx}$$
    Hence
    $$\dfrac{dy}{dx}$$
    $$=3x^{2}$$
    $$=\sqrt{3}$$
    Or 
    $$x^{2}=\dfrac{1}{\sqrt{3}}$$
    Hence
    $$x=\pm\dfrac{1}{\sqrt{\sqrt{3}}}$$.
    Thus y
    $$=\dfrac{1}{\sqrt{3}}.\dfrac{1}{\sqrt{\sqrt{3}}}$$.
  • Question 2
    1 / -0
    Find the points on the curve $$y=x/(1-x^{2})$$ where the tangents makes an angle of $$\pi /4$$ with x-axis
    Solution
    $$\dfrac{dy}{dx}=tan45^{0}$$
    Or
    $$\dfrac{dy}{dx}=1$$
    Or 
    $$\dfrac{(1-x^{2})-x(-2x)}{(1-x^{2})^{2}}=1$$
    Or 
    $$1-x^{2}+2x^{2}=(1-x^{2})^{2}$$
    Or 
    $$1+x^{2}=1-2x^{2}+x^{4}$$
    Or 
    $$x^{4}-3x^{2}=0$$
    Or 
    $$x^{2}[x^{2}-3]=0$$
    $$x=0$$ or 
    $$x=\pm\sqrt{3}$$
    Hence
    $$y=\dfrac{\sqrt{3}}{1-3}=-\dfrac{\sqrt{3}}{2}$$

    $$y=\dfrac{-\sqrt{3}}{1-3}=\dfrac{\sqrt{3}}{2}$$

    Hence
    $$\left(\sqrt{3},-\dfrac{\sqrt{3}}{2}\right),\left(-\sqrt{3},\dfrac{\sqrt{3}}{2}\right)$$.
  • Question 3
    1 / -0
    Find the equations of the tangents drawn to the curve $$\displaystyle y= x^{4}$$ which are drawn from the point (2,0).
    Solution
    Let the equation of curve be $$y=x^4$$
    Let the point of contact be $$(h,k)$$
    $$\Rightarrow \displaystyle k= h^{4}$$    ...(1)

    Now, $$\dfrac{dy}{dx}=4x^3$$
    Slope of tangent to the curve at $$(h,k)$$ is $$4h^3$$
    Tangent is $$\displaystyle y-k= 4h^{3}\left ( x-h \right )$$ ...(2)
    It passes through (2,0) 
    $$\displaystyle \therefore -k= 4h^{3}\left ( 2-h \right )$$ 
    $$\displaystyle -h^{4}= 8h^{3}-4h^{4}$$ by (1)
    $$\displaystyle 3h^{4}-8h^{3}= 0$$
    $$\displaystyle \therefore h= 0$$ or $$\dfrac{8}{3} $$
    $$\displaystyle \therefore k= 0$$ or $$\displaystyle \left ( 8/3 \right )^{4}$$
    $$\displaystyle \therefore $$ Points are (0,0) and $$\displaystyle \left [ 8/3, \left ( 8/3 \right )^{4} \right ]$$ 
    Putting in (2), tangents are $$\displaystyle y= 0$$
    and $$\displaystyle y-\left ( \frac{8}{3} \right )^{4}= 4\left ( \frac{8}{3} \right )^{3}\left ( x-\frac{8}{3} \right )$$
  • Question 4
    1 / -0
    If the normal to the curve $$y=f(x)$$ at the point $$(3,4) $$ makes an angle $$3\pi /4 $$ with the positive x-axis, then $$f'(3)=$$
    Solution
    Tangent being perpendicular to given line of slope 2, will have its slope as -$$\displaystyle \dfrac{1}{2}$$.
    Slope of tangent=$$\displaystyle -\dfrac{fx}{fy}=-\dfrac{6x+1}{2(y+1)}=-\dfrac{1}{2}\therefore y=6x$$.
    Sloping with the given curve, we have $$\displaystyle 3x^{2}+36x^{2}+x+12x=0 $$
    or $$13x(3x+1)=0\therefore x=0, -1/3 \therefore y=0, -2$$
     Hence the two points are $$\displaystyle (0,0),\left ( -\dfrac{1}{3},-2 \right )$$ $$\displaystyle \therefore y=-\dfrac{1}{2}x$$ and $$y+2=-\dfrac{1}{2}\left ( x+\dfrac{1}{3} \right ) $$ or $$ 2y+x=0$$ and $$\displaystyle 2y+x+\dfrac{13}{3}=0$$

    Ans: D
  • Question 5
    1 / -0
    The points of contact of the tangents drawn from the origin to the curve $$y=\sin{x}$$ lie on the curve
    Solution
    Let the tangent be drawn at the point $$\left(x,y\right).$$
    Its equation is $$\displaystyle Y-y=\frac { dy }{ dx } \left( X-x \right) $$
    But $$y=\sin{x}$$
    $$\therefore\displaystyle\frac{dy}{dx}=\cos{x}$$
    $$\Rightarrow Y-y=\cos{x}\left(X-x\right)$$
    Since it passes through $$\left(0,0\right)$$, therefore substituting $$\left(x,y\right)$$ by $$\left(0,0\right)$$ we get 
    $$-y=-x\cos{x}\Rightarrow\displaystyle\frac{y}{x}=\cos{x}$$ and $$y=\sin{x}$$
    $$\displaystyle \therefore \frac { { y }^{ 2 } }{ { x }^{ 2 } } +{ y }^{ 2 }=\cos ^{ 2 }{ x } +\sin ^{ 2 }{ x } =1$$
    $$\Rightarrow { y }^{ 2 }+{ x }^{ 2 }{ y }^{ 2 }={ x }^{ 2 }\Rightarrow { x }^{ 2 }-{ y }^{ 2 }={ x }^{ 2 }{ y }^{ 2 }$$
    hence the points of contact lie on $${ x }^{ 2 }-{ y }^{ 2 }={ x }^{ 2 }{ y }^{ 2 }$$
  • Question 6
    1 / -0
    At what point p(x,y)of the curve $$\displaystyle y=e^{-\left | x \right |}$$ should a tangent  be drawn so that area of the triangle bounded by the tangent and the co-ordinate axes be greatest ?
    Solution
    The equation of the curve does not change if $$x$$ be + ive or-ive. 
    Hence we consider only +ive values of $$x$$ i.e $$\displaystyle x> 0,$$ 
    $$\displaystyle \therefore \left | x \right |=x \therefore y={-x}$$
     Consider any point (x,y) tangent at which is $$\displaystyle Y-y=-e^{-x}\left ( X-x \right )$$ 
    It meets the axis $$\displaystyle Y=0 at \left ( x=ye^{x},0 \right )$$ 
    It meets the axis $$\displaystyle X=0 at (0,y+\dfrac x{e^{x}})$$ 
    Area of the triangle $$\displaystyle =\frac{1}{2}AB $$
     $$\displaystyle \Delta =\frac{1}{2}\left ( x=ye^{x} \right )\left ( y+\frac{x}{e^{x}} \right )$$ 
    $$\displaystyle =\frac{1}{2}\left ( xy+xy+y^{2}e^{x}+\frac{x^{2}}{e^{x}} \right )$$ Substitute $$\displaystyle y=\frac{1}{e^{x}}$$ 
    $$\displaystyle \Delta =\frac{1}{2}\left [ \frac{2x}{e^{x}}+\frac{e^{x}}{e^{2x}}+\frac{x^{2}}{e^{x}} \right ]=\frac{1}{2}e^{-x}\left ( x+1 \right )^{2}$$ 
    For max. value of $$\displaystyle \Delta $$
     we have$$\displaystyle \frac{d\Delta }{dx}=0 \therefore \frac{1}{2}e^{-x\left [ -\left ( x+1 \right )^{2}+2\left ( x+1 \right ) \right ]}=0 $$ 
    or $$\displaystyle \frac{1}{2}\left ( x+1 \right )\left ( 1-x \right )e^{-x}=\frac{1}{2}e^{-x}\left ( 1-x^{2} \right )$$ 
    $$\displaystyle \therefore \frac{d\Delta }{dx}=0\Rightarrow x=1-1.$$
    We shall consider only x=1as x is +ive.
    $$\displaystyle \frac{d^{2}\Delta }{dx^{2}}=\frac{1}{2}e^{x}\left [ -1\left ( 1-x^{2} \right )-2x \right ]$$ 
    $$\displaystyle =-\frac{x}{e^{x}}=-\frac{1}{e}=-ive$$ at $$x=1 $$
     Hence $$\displaystyle \Delta $$ is max.
    When x=1 $$\displaystyle \therefore y=e^{-1}=\dfrac 1e.$$ 
    $$\displaystyle \therefore $$ 
    Required point is $$(1,\dfrac 1e)$$. we have already stated that if $$x$$ be changed to $$-x$$ the equation of the curve does not change. 
    Hence the required points are $$\displaystyle \left ( \pm 1,\dfrac 1e \right )$$ 
  • Question 7
    1 / -0
    If the tangent at the point $$\displaystyle \left ( at^{2},at^{3} \right )$$ on the curve $$\displaystyle ay^{2}= x^{3}$$ meets the curve again at Q.then the co-ordinates of Q is/are 
    Solution
    Given, $$ay^2 = x^3$$
    $$\Rightarrow 2ay\cfrac{dy}{dx} = 3x^2$$
    $$\Rightarrow \cfrac{dy}{dx} = \cfrac{3x^2}{2ay}$$
    Thus slope of tangent at point $$(at^2, at^3)$$ is $$m = \cfrac{3.a^2t^4}{2a.at^3} = \cfrac{3}{2}t$$
    Therefore equation of tangent at the same point is $$(y-at^3) = \cfrac{3}{2}t(x-at^2)$$
    Now let this line again intersect the given curve at $$(at_1^2, at_1^3)$$
    $$\Rightarrow (at_1^3-at^3) = \cfrac{3}{2}t(at_1^2-at^2)$$
    $$\Rightarrow (t_1^3-t^3) = \cfrac{3}{2}t(t_1^2-t^2)$$
    $$\Rightarrow 2(t_1^2+t^2-tt_1) =3t(t_1-t)\Rightarrow 2t_1^2-t^2-tt_1=0$$
    $$\Rightarrow (t-t_1)(2t_1+t)=0\Rightarrow t_1 = -\cfrac{1}{2}t$$
    Hence required point is, $$\left(\cfrac{1}{4}at^2, -\cfrac{1}{8}at^3\right)$$
  • Question 8
    1 / -0
    Find the co-ordinates of the points on the curve $$\displaystyle y= x/\left ( 1+x^{2} \right )$$ where the tangent to the curve has greatest slope.
    Solution
    Given curve 
    $$\displaystyle y= \dfrac{x}{\left ( 1+x^{2} \right )}$$ 
    Here slope
    $$\displaystyle S= \dfrac{dy}{dx}= \dfrac{\left \{ 1.\left ( 1+x^{2} \right )-2x.x \right \}}{\left ( 1+x^{2} \right )^{2}}$$
    $$\displaystyle \Rightarrow S =\dfrac{\left ( 1-x^{2} \right )}{\left ( 1+x^{2} \right )^2}$$

    Now, $$\displaystyle \dfrac{dS}{dx}=\dfrac{ \left \{ -2x\left ( 1+x^{2} \right )^{2}-2\left ( 1+x^{2} \right ).2x\left ( 1-x^{2} \right ) \right \}}{\left ( 1+x^{2} \right )^{4}}$$

    $$\displaystyle = \dfrac{-2x\left ( 1+x^{2} \right )\left ( 3-x^{2} \right )}{\left ( 1+x^{2} \right )^{4}}$$

    $$\displaystyle \dfrac{dS}{dx}= \dfrac{2x\left [ x-\left ( -\sqrt{3} \right ) \right ]\left [ x-\sqrt{3} \right ]}{\left ( 1+x^{2} \right )^{3}}.$$

    For maximum or minimum of S, $$\dfrac{dS}{dx}=0$$.
    $$\displaystyle \Rightarrow  x= -\sqrt{3}, 0, \sqrt{3}$$.
    Now, at $$x=0$$, $$\dfrac{ds}{dx}$$ changes from +ive to -ive
    At $$\displaystyle x= \pm \sqrt{3}$$. it changes from -ive to +ive .
    Hence slope S is maximum when x=0 and min. when $$\displaystyle x= \pm \sqrt{3}$$, thus for greatest slope, we have x=0 and y=0.
    Hence the required point is (0, 0), that is, the origin.
  • Question 9
    1 / -0
    The sum of the intercepts of a tangent to $$\displaystyle \sqrt{x}+\sqrt{y}=\sqrt{a}, a> 0$$ upon the coordinate axes is
    Solution
    $$\sqrt { x } +\sqrt { y } =\sqrt { a } ,a>0$$
    Differentiating w.r.t $$x$$, we get
    $$\displaystyle \dfrac { 1 }{ 2\sqrt { x }  } +\dfrac { 1 }{ 2\sqrt { y }  } \dfrac { dy }{ dx } =0\Rightarrow \dfrac { dy }{ dx } =-\dfrac { \sqrt { y }  }{ \sqrt { x }  } $$
    Equation of tangent at any point $$\left(x,y\right)$$ of the curve is
    $$\displaystyle Y-y=-\dfrac { \sqrt { y }  }{ \sqrt { x }  } \left( X-x \right) $$
    So intercepts of x-axis and y-axis are $$x+\sqrt{xy}$$ and $$y+\sqrt{xy}$$.
    Therefore, the sum of intercepts 
    $$=x+y+2\sqrt { xy } ={ \left( \sqrt { x } +\sqrt { y }  \right)  }^{ 2 }=a$$
  • Question 10
    1 / -0
    The line $$y=x$$ is a tangent to the parabola $$\displaystyle y= ax^{2}+bx+c$$ at the point $$x=1$$.If the parabola passes through the point $$(-1,0)$$, then determine $$a, b, c.$$
    Solution
    Given equation of parabola is 
    $$\displaystyle y= ax^{2}+bx+c$$ 
    $$\displaystyle \frac{dy}{dx}= 2ax+b$$
    Slope of tangent to the curve at $$x=1$$ is $$2a+b$$
    Given tangent is $$y=x$$ . Slope of this tangent is $$1.$$
    So, $$2a+b=1$$    ...(1)

    Since, the parabola passes through $$(-1,0)$$ 
    $$\displaystyle \therefore a-b+c= = 0$$      ...(2) 

    Given $$y=x$$ is a tangent at $$x=1$$
     $$\displaystyle \therefore y= 1.$$ 
    Hence $$(1,1)$$ lies both on tangent and parabola 
    $$\displaystyle \therefore a+b+c= 1$$         ...(3)

    Solving (1), (2) and (3), we get
     $$\displaystyle a= \frac{1}{4}, b= \frac{1}{2}, c= \frac{1}{4}.$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now