Self Studies

Tangents and its Equations Test 2

Result Self Studies

Tangents and its Equations Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$C$$ be a curve given by $$y(x) = 1 + \sqrt {4x - 3}, x > \dfrac {3}{4}$$. If $$P$$ is a point on $$C$$, such that the tangent at $$P$$ has slope $$\dfrac {2}{3}$$, then a point through which the normal at $$P$$ passes, is:
    Solution
    $$\dfrac {dy}{dx} = \dfrac {1}{2\sqrt {4x - 3}} \times 4 = \dfrac {2}{3}$$
    $$\Rightarrow 4x - 3 = 9$$
    $$\Rightarrow x = 3$$
    So, $$y = 4$$
    Equation of normal at $$P(3, 4)$$ is
    $$y - 4 = -\dfrac {3}{2} (x - 3)$$
    i.e. $$2y - 8 = -3x + 9$$
    $$\Rightarrow 3x + 2y - 17 = 0$$
  • Question 2
    1 / -0
    What is the $$x$$-coordinate of the point on the curve $$f(x) = \sqrt {x}(7x - 6)$$, where the tangent is parallel to $$x$$-axis?
    Solution
    Given, $$f(x) = \sqrt {x}(7x - 6) = 7x^{3/2} - 6x^{1/2}$$
    Thus $$f'(x) = 7\times \dfrac {3}{2}x^{1/2} - 6\times \dfrac {1}{2} x^{-1/2}$$
    When tangent is parallel to $$x$$ axis $$f'(x) = 0$$.
    Therefore, $$\dfrac {21}{2}x^{1/2} - 3x^{-1/2} = 0$$
    $$\Rightarrow \dfrac {21}{2}\sqrt {x} = \dfrac {3}{\sqrt {x}}$$
    $$\Rightarrow 7x = 2$$
    $$\Rightarrow x = \dfrac {2}{7}$$
  • Question 3
    1 / -0
    Tangents are drawn from the origin to the curve $$y=\cos { x } $$. Their points of contact lie on
    Solution
    Let $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ be one of the points of contact. Given curve is $$y=\cos { x } $$
    $$\Rightarrow \cfrac { dy }{ dx } =-\sin { x } $$
    $$\Rightarrow { \left| \cfrac { dy }{ dx }  \right|  }_{ \left( { x }_{ 1 },{ y }_{ 1 } \right)  }^{  }=-\sin { { x }_{ 1 } } $$
    Now the equation of the tangent at $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ is
    $$y-{ y }_{ 1 }{ \left( \cfrac { dy }{ dx }  \right)  }_{ \left( { x }_{ 1 },{ y }_{ 1 } \right)  }\left( x-{ x }_{ 1 } \right) $$
    $$\Rightarrow y-{ y }_{ 1 }=-\sin { { x }_{ 1 } } \left( 0-{ x }_{ 1 } \right) $$
    Since, it is given that equation of tangent passes through origin
    $$\Rightarrow 0-{ y }_{ 1 }=-\sin { { x }_{ 1 } } \left( 0-{ x }_{ 1 } \right) $$
    $$\therefore { y }_{ 1 }=-{ x }_{ 1 }\sin { { x }_{ 1 } } ...(i)$$
    also, point $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ lies on $$\therefore { y }_{ 1 }=\cos { { x }_{ 1 } } $$
    From Eqs (i), (ii) we get
    $$\sin ^{ 2 }{ { x }_{ 1 } } +\cos ^{ 2 }{ { x }_{ 1 } } =\cfrac { { y }_{ 1 }^{ 2 } }{ { x }_{ 1 }^{ 2 } } +{ y }_{ 1 }^{ 2 }=1$$
    $$ \Rightarrow { x }_{ 1 }^{ 2 }={ y }_{ 1 }^{ 2 }+{ y }_{ 1 }^{ 2 }{ x }_{ 1 }^{ 2 }\quad $$
    Hence, the locus of $${ x }^{ 2 }={ y }^{ 2 }+{ y }^{ 2 }{ x }^{ 2 }\Rightarrow { x }^{ 2 }{ y }^{ 2 }={ x }^{ 2 }-{ y }^{ 2 }$$
  • Question 4
    1 / -0
    Determine the equation of tangent at vertex of the parabola $$\displaystyle (x+4)^{2}=-4(y-2)$$.
    Solution
    Given hyperbola is, $$(x+4)^2=-4(y-2)$$

    Differentiating w.r.t $$x$$

    $$2(x+4)=-4\cfrac{dy}{dx}\Rightarrow \cfrac{dy}{dx}=-\cfrac{x+4}{2}$$

    Clearly the vertex of the parabola is, $$(-4,2)$$

    Hence slope of the tangent at the vertex is, $$m=\left(\cfrac{dy}{dx}\right)_{(-4,2)}=-\cfrac{-4+4}{2}=0$$

    Ergo required tangent is, $$(y-2)=0(x+4)=0$$

    $$\Rightarrow y=2$$
  • Question 5
    1 / -0
    Normal to the parabola $$\displaystyle y^{2}=4ax$$ where $$m$$ is the slope of the normal is
    Solution
    Given, $$y^2=4ax$$
    $$\Rightarrow 2ydy=4a$$
    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{2a}{y}$$
    Thus slope of normal to the given parabola at any point is,
    $$\displaystyle =-\left(\frac{1}{\frac{dy}{dx}}\right)=-\frac{y}{2a}=m$$ (given)
    $$\Rightarrow y=-2am$$
    Thus from $$y^2=4ax,$$ $$x=\dfrac{y^2}{4a}=am^2$$
    Therefore the point is $$(am^2,-2am)$$
    Hence the required line passing through $$(am^2,-2am)$$ and having slope $$m$$ is,
    $$(y+2am)=m(x-am^2)$$
    $$\Rightarrow y= mx-2am-am^3$$
  • Question 6
    1 / -0
    Tangent to parabola $$\displaystyle y^{2}=4x+5$$ which is parallel to $$y=2x+7$$
    Solution
    Given, $$y^2=4x+5$$

    $$\therefore \displaystyle 2y\frac{dy}{dx}=4 $$

    $$\therefore \dfrac{dy}{dx}=\dfrac{2}{y}=2,$$ (given) 

    $$\therefore y=1 \Rightarrow  x=-1$$

    $$\therefore $$ required tangent is given by, $$y-1=2(x+1)$$ or $$y=2x+3$$
  • Question 7
    1 / -0
    The slope of tangent to the curve $$y=\int_{0}^{x}\displaystyle \frac{dx}{1+x^{3}}$$ at the point where $$x=1$$ is
    Solution
    $$y=\int _{ 0 }^{ x }{ \cfrac { dx }{ 1+{ x }^{ 3 } }  } \\ \cfrac { dy }{ dx } =\cfrac { 1 }{ 1+{ x }^{ 3 } } =\cfrac { 1 }{ 2 } $$
  • Question 8
    1 / -0
    The values of '$$a$$' for which $$y=x^{2}+ ax+25$$ touches $$x$$-axis are
    Solution

    $${y}'=2x+a=0$$
    For any quadratic equation to touch x-axis it must have equal roots at that point, so the equation must be in form of perfect square.
    $$y=(x+5)^{2}$$  at  $$a=10$$
  • Question 9
    1 / -0
    The equation of the normal to the curve $$\displaystyle 2y=3-x^{2}$$ at the point $$(1,1)$$
    Solution
    $$\displaystyle 2y=3-x^{2}$$

    $$\cfrac{dy}{dx}=-x =m$$

    Thus slope of normal at $$(1,1)$$ is $$=-\left(\cfrac{1}{m}\right)_{(1,1)} = 1$$

    Hence required normal is, $$(y-1)=1(x-1)\Rightarrow x-y=0$$
  • Question 10
    1 / -0
    The equation of the normal to the curve $$\displaystyle x^{3}+y^{3}=6xy$$  at the point  $$(3,3).$$
    Solution
    $$\displaystyle

    \dfrac{dy}{dx}=-\dfrac{fx}{fy}=-\dfrac{3x^{2}-6y}{3y^{2}-6x}=-1 $$  at  $$(3,3)$$
    $$\therefore$$ Required normal is $$y-3=1(x-3)$$  or  $$x-y=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now