Let $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ be one of the points of contact. Given curve is $$y=\cos { x } $$ $$\Rightarrow \cfrac { dy }{ dx } =-\sin { x } $$ $$\Rightarrow { \left| \cfrac { dy }{ dx } \right| }_{ \left( { x }_{ 1 },{ y }_{ 1 } \right) }^{ }=-\sin { { x }_{ 1 } } $$ Now the equation of the tangent at $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ is $$y-{ y }_{ 1 }{ \left( \cfrac { dy }{ dx } \right) }_{ \left( { x }_{ 1 },{ y }_{ 1 } \right) }\left( x-{ x }_{ 1 } \right) $$ $$\Rightarrow y-{ y }_{ 1 }=-\sin { { x }_{ 1 } } \left( 0-{ x }_{ 1 } \right) $$ Since, it is given that equation of tangent passes through origin $$\Rightarrow 0-{ y }_{ 1 }=-\sin { { x }_{ 1 } } \left( 0-{ x }_{ 1 } \right) $$ $$\therefore { y }_{ 1 }=-{ x }_{ 1 }\sin { { x }_{ 1 } } ...(i)$$ also, point $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ lies on $$\therefore { y }_{ 1 }=\cos { { x }_{ 1 } } $$ From Eqs (i), (ii) we get $$\sin ^{ 2 }{ { x }_{ 1 } } +\cos ^{ 2 }{ { x }_{ 1 } } =\cfrac { { y }_{ 1 }^{ 2 } }{ { x }_{ 1 }^{ 2 } } +{ y }_{ 1 }^{ 2 }=1$$ $$ \Rightarrow { x }_{ 1 }^{ 2 }={ y }_{ 1 }^{ 2 }+{ y }_{ 1 }^{ 2 }{ x }_{ 1 }^{ 2 }\quad $$ Hence, the locus of $${ x }^{ 2 }={ y }^{ 2 }+{ y }^{ 2 }{ x }^{ 2 }\Rightarrow { x }^{ 2 }{ y }^{ 2 }={ x }^{ 2 }-{ y }^{ 2 }$$