Self Studies

Tangents and its Equations Test 21

Result Self Studies

Tangents and its Equations Test 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the tangent at $$(1, 1)$$ on  $$\displaystyle y^{2}= x\left ( 2-x^{2} \right )$$ meets the curve again at $$P$$, then $$P$$ is
    Solution
    $$2y.\dfrac{dy}{dx}=(2-x)^{2}-2x(2-x)$$
    At $$(1,1)$$ we get 
    $$2.\dfrac{dy}{dx}=1-2$$
    Or 
    $$\dfrac{dy}{dx}=\dfrac{-1}{2}$$
    Now Equation of the tangent is 
    $$(y-1)=\dfrac{-1}{2}(x-1)$$
    Or 
    $$2y-2=-x+1$$
    Or 
    $$x+2y=3$$
    Or 
    $$x=3-2y$$.
    Substituting in the equation we get 
    $$y^{2}=(3-2y)(2-3+2y)^{2}$$
    Or 
    $$y^{2}=(3-2y)(2y-1)^{2}$$
    Or 
    $$y^{2}=(3-2y)(4y^{2}-4y+1)$$
    Or 
    $$y^{2}=12y^{2}-12y+3-8y^{3}+8y^{2}-2y$$
    $$y^{2}=-8y^{3}+20y^{2}-14y+3$$
    Or 
    $$8y^{3}-19y^{2}+14y-3=0$$
    Solving the above cubic, we get
    $$y=\dfrac{3}{8},\dfrac{3}{8}$$ and $$y=1$$
    Considering $$y=\dfrac{3}{8}$$ we get 
    $$x=3-2y$$
    $$=3-\dfrac{3}{4}$$

    $$=\dfrac{9}{4}$$
    Hence the point is 
    $$(\dfrac{9}{4},\dfrac{3}{8})$$
  • Question 2
    1 / -0
    Tangent is drawn to ellipse $$\displaystyle \frac{x^{2}}{27}+y^{2}=1$$ at $$\left ( 3\sqrt{3}\cos \theta ,\sin \theta  \right )$$ (where $$\theta \in \left ( 0,\dfrac{\pi}2 \right )).$$ Then the value of $$\theta$$ such that sum of intercepts on axes made by this tangent is least is
    Solution
    Let $$x=3\sqrt{3}\cos\theta$$
    And 
    $$y=\sin\theta$$
    Hence, $$\dfrac{dy}{dx}$$
    $$=-\dfrac{\cos\theta}{3\sqrt{3}\sin\theta}$$ ...(i)
    Hence equation of the tangent will be 
    $$y-\sin\theta=-\dfrac{\cos\theta}{3\sqrt{3}\sin\theta}(x-3\sqrt{3}.\cos\theta)$$
    $$3\sqrt{3}\sin\theta.y-3\sqrt{3}\sin^{2}\theta=-x\cos\theta+3\sqrt{3}\cos^{2}\theta$$
    $$3\sqrt{3}\sin\theta.y+x\cos\theta=3\sqrt{3}$$.
    Hence the intercepts are 
    $$cosec\theta$$ and $$3\sqrt{3}.\sec\theta$$.
    Hence, $$k=cosec\theta+3\sqrt{3}.\sec\theta$$
    Now $$\dfrac{dk}{d\theta}$$ $$=-cosec\theta.\cot\theta+3\sqrt{3}.\sec\theta.\tan\theta$$ $$=0$$
    $$3\sqrt{3}.\sec\theta.\tan\theta=cosec\theta.\cot\theta$$
    $$3\sqrt{3}.\tan^{2}\theta.\dfrac{1}{\cos\theta}=\dfrac{1}{\sin\theta}$$
    $$3\sqrt{3}.\tan^{2}\theta=\dfrac{\cos\theta}{\sin\theta}$$
    $$3\sqrt{3}.\tan^{3}\theta=1$$
    $$\tan^{3}\theta=\dfrac{1}{3\sqrt{3}}$$
    $$\tan\theta=\dfrac{1}{\sqrt{3}}$$
    $$\theta=\tan^{-1}(\dfrac{1}{\sqrt{3}})$$
    $$\theta=30^{0}$$ $$=\dfrac{\pi}{6}$$.
  • Question 3
    1 / -0
    The tangent to the curve $$\displaystyle 3xy^{2}-2x^{2}y=1$$  at $$(1, 1)$$ meets the curve again at the point
    Solution
    Given, $$3xy^{2}-2x^{2}y=1$$
    Differentiating with respect to x, gives us 

    $$3y^{2}+6xyy'-4xy-2x^{2}y'=0$$
    At (1,1)
    $$3+6y'-4-2y'=0$$
    $$4y'=1$$
    $$y'=\dfrac{1}{4}$$

    Hence the equation of the tangent is 

    $$\dfrac{y-1}{x-1}=\dfrac{1}{4}$$

    $$4y-4=x-1$$
    $$x-4y=-3$$
    $$x=4y-3$$
    Substituting in the equation of the curve, give us 
    $$3(4y-3)y^{2}-2(4y-3)^{2}y=1$$

    $$(4y-3)y[3y-2(4y-3)]=1$$

    $$(4y-3)y(6-5y)=1$$

    $$y(4y-3)(5y-6)=-1$$

    $$y(20y^{2}-24y-15y+18)=-1$$

    $$y(20y^{2}-39y+18)=-1$$

    $$20y^{3}-39y^{2}+18y+1=0$$

    $$y=1,\dfrac{-1}{20}$$

    $$\Rightarrow x=1,\dfrac{-16}{5}$$

    Hence the tangent again cuts the curve at $$(\dfrac{-16}{5},\dfrac{-1}{20})$$
  • Question 4
    1 / -0
    The angle at which the curve $$y=ke^{kx}$$ intersects the $$y$$ -axis is
    Solution
    $$\displaystyle \dfrac{dy}{dx}=k^{2}e^{kx}$$. 

    The curve intersects $$y$$-axis at $$\left ( 0,k \right )$$ 

    So, $$\displaystyle \dfrac{dy}{dx}|_{\left ( 0,k \right )}=k^{2}$$.

    If $$\theta $$ is the angle at which the given
    curve intersects the $$y$$-axis then $$\displaystyle \tan \left ( \pi /2-\theta  \right )=\dfrac{k^{2}-0}{1+0.k^{2}}=k^{2}$$. 

    Hence $$\theta =\cot ^{-1}k^{2}$$
  • Question 5
    1 / -0
    Let $$\displaystyle f\left ( x \right )=x^{3}+ax+b$$ with $$\displaystyle a\neq b$$ and suppose the tangent lines to the graph of $$f$$ at $$x = a$$ and $$x = b$$ have the same gradient Then the value of $$f (1)$$ is equal to
    Solution
    $$f(x)=x^3+ax+b$$
    $$f'(x)=3x^2+a$$
    Given  gradient at $$x=a$$ and at $$x=b$$ are same
    $$\Rightarrow 3a^2 +a=3b^2+a\Rightarrow b^2=a^2$$
    But given $$a\neq b$$
    $$\Rightarrow a+b=0 ..(1)$$
    Hence $$ f(1)=1+a+b=1$$ using (1)
  • Question 6
    1 / -0
    If a variable tangent to the curve $$\displaystyle x^{2}y=c^{3}$$ makes intercepts $$a, b$$ on $$x$$ and $$y$$ axis respectively then the value of $$\displaystyle x^{2}$$ is
    Solution
    Let any point on the curve is $$\displaystyle \left ( \frac{c}{t},ct^{2} \right )$$
    $$\displaystyle y=\frac{c^{3}}{x^{2}}\Rightarrow \frac{dy}{dx}=-\frac{2c^{3}}{x^{3}}=-\frac{2c^{3}}{\dfrac {c^{3}}{t^{3}}}$$
    $$\displaystyle \frac{dy}{dx}=-2t^{3}$$
    Equation of tangent is
    $$\displaystyle y-ct^{2}=-2t^{3}\left ( x-\frac{c}{t} \right )$$
    for x intercept
    $$\displaystyle 0-ct^{2}=-2t^{3}\left ( a-\frac{c}{t} \right )\Rightarrow \frac{c}{2t}=a-\frac{c}{t}$$
    $$\displaystyle a=\frac{3}{2}\frac{c}{t}$$
    for y intercept
    $$\displaystyle b-ct^{2}=-2t^{3}\left ( 0-\frac{c}{t} \right )$$
    $$\displaystyle \Rightarrow b-ct^{2}=2t^{2}c  \:\:\Rightarrow b=3ct^{2}$$
    $$\displaystyle a^{2}b=\frac{9}{4},\frac{c^{2}}{t^{2}}\times 3ct^{2}=\frac{27c^{3}}{4}$$
  • Question 7
    1 / -0
    A curve with equation of the form $$\displaystyle y=ax^{4}+bx^{3}+cx+d$$ has zero gradient at the point (0, 1) and also touches the x-axis at the point (-1, 0) then the values of x for which the curve has a negative gradient are
    Solution
    Given, $$\displaystyle y=ax^{4}+bx^{3}+cx+d$$
    $$\Rightarrow y'=4ax^3+3bx^2+c$$
    Using given conditions,
    $$y(0)=1\Rightarrow d=1$$
    $$y'(0)=0\Rightarrow c=0$$
    $$y(-1)=0\Rightarrow a-b=-1 ..(1)$$
    and $$y'(-1)=0\Rightarrow 4a-3b=0 ..(2)$$
    Solving equation (1) and (2) we get, $$a=3,b=4$$
    Hence the polynomial is,
    $$y=3x^4+4x^3+1$$
    $$y'=12x^2(1+x)$$
    Now for negative gradient
    $$y' < 0\Rightarrow 12x^2(1+x)< 0$$
    $$\Rightarrow x< -1$$
  • Question 8
    1 / -0
    The slope of the tangent to the curve represented by $$x= t^{2}+3t-8$$ and $$y= 2t^{2}-2t-5$$ at the point $$M\left ( 2,-1 \right )$$ is

    Solution
    We first determine the value of $$t$$ corresponding to the given values ofx and $$y$$. From $$t^{2}+3t-8= 2$$, we get $$t = 2, -5$$, and from $$2t^{2}-2t-5= 2$$ we get $$t = 2, -1$$. Hence to the given point there corresponds the value $$t = 2$$. Therefore, the slope of the tangent at $$\left ( 2,-1 \right )$$ is 

    $$\displaystyle \left | y' \right |_{t=2}=\left | \dfrac{dy/dt}{dx/dt} \right |_{t=2}\:=\left | \dfrac{4t-2}{2t+3} \right |_{t=2}=\:\dfrac{6}{7}$$
  • Question 9
    1 / -0
    The curve $$y= ax^{3}+bx^{2}+cx+8$$  touches $$x$$-axis at $$P\left ( -2,0 \right )$$ and cuts the $$y$$-axis at a point $$Q(0,8)$$ where its gradient is 3. The values of $$a$$, $$b$$, $$c$$ are respectively

    Solution
    Given, $$y= a x^3+b x^2+cx+8$$
    $$\therefore \displaystyle \dfrac{dy}{dx}= 3ax^{2}+2bx+c$$
    Since the curve touches $$x$$-axis at $$\left ( -2,0 \right )$$ so 
    $$\displaystyle \dfrac{dy}{dx}|_{\left ( -2,0 \right )}= 0\Rightarrow 12a-4b+c= 0$$    $$\left ( i \right )$$
    The curve cut the $$y$$-axis at $$\left ( 0,8 \right )$$ so
    $$\displaystyle \dfrac{dy}{dx}|_{\left ( 0,8 \right )}= 3\Rightarrow c= 3$$
    Also the curve passes through $$\left ( -2,0 \right )$$ so 
    $$0= -8a+4b-2c+8\Rightarrow -8a+4b-2= 0$$    $$ \left ( ii \right )$$
    Solving $$ \left ( i \right )$$ and $$ \left ( ii \right )$$ 
    $$a = -1/4$$, $$b =0$$
  • Question 10
    1 / -0
    The number of values of c such that the straight line $$3x + 4y = c$$ touches the curve $$\displaystyle \frac{x^{4}}{2}=x+y$$ is
    Solution
    $$3x+4y=c$$
    Or 
    $$3+4y'=0$$
    Or 
    $$y'=\dfrac{-3}{4}$$.
    This is the slope of the tangent.
    Now 
    Differentiating the equation of the curve with respect to $$x$$, we get 
    $$2x^{3}=1+y'$$
    Now 
    $$y'=\dfrac{-3}{4}$$
    Hence
    $$2x^{3}=\dfrac{1}{4}$$
    Or 
    $$x^{3}=\dfrac{1}{8}$$
    Hence
    $$x=0.5$$
    Substituting in the equation of the curve we get 
    $$\dfrac{1}{32}=\dfrac{1}{2}+y$$
    Or 
    $$y=\dfrac{-15}{32}$$.
    Hence substituting the above points on the equation of the line, we get 
    $$\dfrac{3}{2}+\dfrac{-15}{8}=c$$
    Or 
    $$c=\dfrac{-3}{8}$$
    Hence there is only $$1$$ value of $$c$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now