Self Studies

Tangents and its Equations Test 24

Result Self Studies

Tangents and its Equations Test 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    At what point the tangent line to the curve $$\displaystyle y=\cos \left ( x+y \right ),\left ( -2\pi \leq x\leq 2\pi  \right )$$ is parallel to $$x + 2y = 0$$
    Solution
    $$\displaystyle y=\cos \left ( x+y \right )$$           $$\displaystyle \left ( -2\pi \leq x\leq 2\pi  \right )$$
    $$\Rightarrow \displaystyle \frac{dy}{dx}=-\sin \left ( x+y \right )\left ( 1+\frac{dy}{dx} \right )$$
    $$\Rightarrow \displaystyle \frac{dy}{dx}\left ( 1+\sin \left ( x+y \right ) \right )=-\sin \left ( x+y \right )$$
    $$\Rightarrow \displaystyle \frac{dy}{dx}=-\frac{\sin \left ( x+y \right )}{1+\sin \left ( x+y \right )}$$
    Given tangent is parallel to the line, $$x + 2y = 0$$
    $$\Rightarrow \displaystyle \frac{dy}{dx}=-\frac{\sin \left ( x+y \right )}{1+\sin \left ( x+y \right )}=-\frac{1}{2}$$
    $$\displaystyle 2\sin \left ( x+y \right )=1+\sin \left ( x+y \right )$$
    $$\displaystyle \sin \left ( x+y \right )=1\Rightarrow \cos(x+y)=0\Rightarrow x+y=\cfrac{\pi}{2}$$
    Also the point lies on the given curve,
     $$y=0\Rightarrow x= \dfrac{\pi }{2}$$
    Thus the point is, $$\displaystyle \left ( \frac{\pi }{2},0 \right )$$
    Hence, option 'A' is correct.
  • Question 2
    1 / -0
    The line $$\dfrac x a +\dfrac  y  b = 1$$ touches the curve $$\displaystyle y=be^{-\tfrac xa}$$ at the point -
    Solution
    $$\displaystyle  y=b\times e^{-\frac{x}{a}}$$

    $$\Rightarrow \displaystyle \frac{dy}{dx}=b\times e^{-\tfrac{x}{a}}\times -\frac{1}{a}=-\frac{b}{a}e^{-\frac{x}{a}}$$

    Now the slope of given line is, $$\displaystyle m=-\frac{1}{a}\times \frac{b}{1}=-\cfrac{b}{a}$$

    Thus for the given line to be tangent to the given curve,

    $$\displaystyle -\frac{b}{a}=-\frac{b}{a}\times e^{-\dfrac{x}{a}}$$

    $$\Rightarrow \displaystyle e^{\dfrac{x}{a}}=1$$

    $$\Rightarrow x = 0\Rightarrow y = b$$

    Therefore, the point is  $$(0, b)$$

    Hence, option 'C' is correct.
  • Question 3
    1 / -0
    At what values of $$a$$, the curve $$x^4+3ax^3+6x^2+5$$ is not situated below any of its tangent lines
    Solution
    $$y=4x^3+3ax^3+6x^2+5$$
    For given situation curve must be concave so,  $$\displaystyle\frac{d^2y}{dx^2}\,>\,0$$
    $$y'=4x^3+9ax^2+12x$$
    $$y''=12x^2+18ax+12\,>\,0=6(2x^2+3ax+2)\,>\,0$$
    $$D\,<\,0\;\;\Rightarrow\;\;9a^2-16\,<\,0$$
    $$\Rightarrow |a|\,<\,\displaystyle\frac{4}{3}$$
  • Question 4
    1 / -0
    The point at which the tangent to the curve $$\displaystyle y=x^{3}+5$$ is perpendicular to the line $$x + 3y = 2$$ are
    Solution
    Let point be $$\displaystyle \left ( x_{1},y_{1} \right )$$
    $$y = \displaystyle x^{3}+5$$
    $$\Rightarrow \displaystyle \dfrac{dy}{dx}=3x^{2}$$
    Now, the slope of tangent at this point is $$=\displaystyle \left ( \frac{dy}{dx} \right )_{x_{1}y_{1}}=3x_{1}^{2}$$
    It is $$\displaystyle \perp $$ to $$x + 3y - 2 = 0$$
    So $$\displaystyle 3x_{1}^{2}\times -\frac{1}{3}=-1\Rightarrow x_1=\pm 1 $$
    Thus,
    at $$\displaystyle x_{1}=1$$,             $$\Rightarrow$$                $$\displaystyle y_{1}=6$$
    and at $$\displaystyle x_{1}=-1$$      $$\Rightarrow$$              $$\displaystyle y_{1}=4$$
    Thus, the points are $$(1, 6)$$ and $$(-1, 4)$$
    Hence, option 'D' is correct.
  • Question 5
    1 / -0
    The points on the curve $$\displaystyle y^{2}=4a\left ( x+a\sin \frac{x}{a} \right )$$ at which the tangent is parallel to x axis lie on -
    Solution
    $$\displaystyle y^{2}=4a\left ( x+a\sin \frac{x}{a} \right )$$
    $$\Rightarrow \displaystyle 2y\frac{dy}{dx}=4a\left ( 1+a\cos \frac{x}{a}\times \frac{1}{a} \right )$$
    $$\Rightarrow \displaystyle \frac{dy}{dx}=\frac{2a}{y}\left ( 1+\cos \frac{x}{a} \right )$$
    Now for tangent to be parallel to x-axis,
    $$\displaystyle \frac{dy}{dx}=0=\frac{2a}{y}\left ( 1+\cos \frac{x}{a} \right )$$
    $$\Rightarrow \displaystyle \frac{x}{a}=\pi $$
    $$\Rightarrow \displaystyle x=a\pi $$
    $$\therefore \displaystyle y^{2}=4a\left ( a\pi +a\times 0 \right )$$
    $$\Rightarrow \displaystyle y^{2}=4a^{2}\pi =4ax$$
    Clearly, this point lie on a parabola.
    Hence, option 'B' is correct.
  • Question 6
    1 / -0
    The equation of normal to the curve $$x+y=x^{y}$$, where it cuts x-axis is
    Solution
    $$ln(x+y)=yln(x)$$

    $$\dfrac{1}{x+y}.(1+\dfrac{dy}{dx})=\dfrac{y}{x}+\dfrac{dy}{dx}.ln(x)$$

    Now $$y=0$$ and $$\dfrac{dy}{dx}=m$$ we get 

    $$\dfrac{1+m}{x}=m.ln(x)$$

    Now $$x=1$$ when $$y=0$$

    Hence

    $$1+m=0$$

    $$m=-1$$

    Slope of normal $$=1.$$

    Hence

    $$\dfrac{y-0}{x-1}=1$$

    $$y=x-1$$.
  • Question 7
    1 / -0
    The lines tangent to the curve $$x^3-y^3+x^2y-yx^2+3x-2y=0$$ and $$x^5-y^4+2x+3y=0$$ at the origin intersect at an angle $$\theta$$ equal to
    Solution
    Given equation of curve $$x^3-y^3+x^2y-yx^2+3x-2y=0$$
    Differentiating we get
    $$\displaystyle 3{ x }^{ 2 }-3{ y }^{ 2 }\frac { dy }{ dx } +x^{ 2 }\frac { dy }{ dx } +2xy-2xy-x^{ 2 }\frac { dy }{ dx } +3-2\frac { dy }{ dx } =0$$

    $$ (3{ y }^{ 2 }+2)\dfrac { dy }{ dx } =3{ x }^{ 2 }+3$$

    $$\Rightarrow \dfrac { dy }{ dx } =\dfrac { 3{ x }^{ 2 }+3 }{ (3{ y }^{ 2 }+2) } $$    

    Slope of tangent to curve at (0,0) is $$m_1=\dfrac{3}{2}$$

    Given equation of other curve $$x^5-y^4+2x+3y=0$$ 
    On differentiation ,
    $$\displaystyle 5{ x }^{ 4 }-4{ y }^{ 3 }\frac { dy }{ dx } +2+3\frac { dy }{ dx } =0$$

    $$\Rightarrow \dfrac { dy }{ dx } =\dfrac { 5{ x }^{ 4 }+2 }{ (4{ y }^{ 3 }-3) } $$
    Slope of tangent to the curve at (0,0) is $$m_2=-\dfrac{2}{3}$$

    Here, $$m_1m_2=-1$$
    Hence, the lines are perpendicular.
  • Question 8
    1 / -0
    The points on the curve $$\displaystyle 9y^2=x^{3}$$ where the normal to the curve makes equal intercepts with coordinates axes is :
    Solution
    Let the point on the curve $$\displaystyle 9y^{2}=x^{3}$$ be $$P\left ( x_{1},y_{1} \right ) $$
    differentiating the curve w.r.t $$x$$
    $$\displaystyle 2\times 9\times y\times \frac{dy}{dx}=3x^{2}$$
    $$\Rightarrow \displaystyle \frac{dy}{dx}=\frac{x^{2}}{2\times 3y}$$
    $$\Rightarrow \displaystyle \left ( \frac{dy}{dx} \right )_{\left ( x_{1},y_{1} \right )}=\frac{x_{1}^{2}}{2\times 3y_{1}}$$
    Thus slope of Normal at P  $$=\displaystyle -\frac{dy}{dx}=\frac{-3y_{1}\times 2}{x_{1}^{2}}$$
    Given normal makes equal intercept
    $$\Rightarrow \displaystyle \frac{-3y_{1}\times 2}{x_{1}^{2}}=\pm 1$$
    $$\Rightarrow \displaystyle \frac{-3y_{1}\times 2}{x_{1}^{2}}=1$$
    $$\Rightarrow \displaystyle -3y_{1}\times 2=x_{1}^{2}$$ so $$9y_1^2\times 4=x_{1}^{4}\Rightarrow x_1^3 \times 4 = x_1^4$$
    So $$\displaystyle x_{1}=4,\: \: \: y=-\frac{8}{3}$$
    $$\Rightarrow \displaystyle \frac{-3y_{1}\times 2}{x_{1}^{2}}=-1 $$
    $$\Rightarrow \displaystyle 2\times 3y_{1}=x_{1}^{2}$$                           ..........(1)
    Also point lies point on the curve $$\displaystyle 9y^{2}=x^{3}$$
    $$\Rightarrow \displaystyle 9y_{1}^{2}=x_{1}^{3}$$
    $$\Rightarrow \displaystyle 9\times \frac{x_{1}^{4}}{36}=x_{1}^{3}$$
    $$\Rightarrow \displaystyle x_{1}=4$$
    $$\Rightarrow \displaystyle x_{1}=4,\: \: \: y_{1}=\frac{16}{6}=\frac{8}{3}$$
    $$\Rightarrow \displaystyle \left ( 4,\frac{8}{3} \right )$$
    Finally the points are $$\displaystyle \left ( 4,\frac{8}{3} \right )\: \: \: or\: \: \: \left ( 4,\frac{-8}{3} \right )$$
    Hence, option 'A' is correct.
  • Question 9
    1 / -0

    Directions For Questions

    Consider the function $$f(x) = b  \ln x - x$$ on the interval $$(0,\infty) $$ where $$b$$ is positive real constant.
    On the basis of above information, answer the following questions

    ...view full instructions

    If the line $$x -y = 0$$ is tangent to $$f(x) = b \ln x - x$$, then $$b$$ lies in the interval
    Solution
    Given equation of curve is
    $$y=b\ln x-x$$
    Also, given $$x-y=0$$ is tangent to the curve.
    So, let $$P(x_1,x_1)$$ be the point of tangency.
    $$x_1=b\ln {x_1}-{x_1}$$
    $$2x_1= b\ln {x_1}$$   ....(1)

    Slope of tangent to the curve at P$$=\dfrac{b}{x_1}-1$$
    Slope of given tangent $$=1$$
    $$\Rightarrow \dfrac{b}{x_1}-1=1$$
    $$\Rightarrow x_1=\dfrac{b}{2}$$
    Substitute this value in (1), we get
    $$b=b\ln {\dfrac{b}{2}}$$
    $$\Rightarrow \ln {\dfrac{b}{2}}=1$$
    $$\Rightarrow \dfrac{b}{2}=e$$
    $$\Rightarrow b=2e$$
    Since, $$2< e<3$$
    $$\Rightarrow 4<b<6$$
  • Question 10
    1 / -0
    Let tangent at a point P on the curve $$\displaystyle { x }^{ 2m }={ y }^{ \tfrac { n }{ 2 }  }={ a }^{ \tfrac { 4m+n }{ 2 }  }$$ meets the x-axis and y-axis at A and B respectively, If AP:PB is $$\displaystyle \frac { n }{ \lambda m } $$, where P lies between A and B, then find the value of $$\displaystyle \lambda $$
    Solution
    $$\displaystyle { x }^{ 2m }{ y }^{ \tfrac { n }{ 2 }  }={ a }^{ \tfrac { 4m+n }{ 2 }  }$$
    $$\displaystyle 2m\ln x +\frac { n }{ 2 } \ln y=\frac { 4m+n }{ 2 }\ln a$$
    $$\displaystyle \frac { \left( 2m \right)  }{ x } +\left( \frac { n }{ 2 }  \right) \frac { 1 }{ y } \frac { dy }{ dx } =0$$
    $$\displaystyle \frac { dy }{ dx } =\left( \frac { -2m }{ x }  \right) \frac { 2y }{ n } $$
    Let $$P$$ be the point $$\displaystyle \left( { x }_{ 1 },{ y }_{ 1 } \right) $$
    So equation of tangent is
    $$\displaystyle y-{ y }_{ 1 }=\left( \frac { -4m }{ n } .\frac { { y }_{ 1 } }{ { x }_{ 1 } }  \right) \left( x-{ x }_{ 1 } \right) $$.......(i)
    Let Tangents meets the axes at $$A$$ and $$B$$ respectively
    $$\displaystyle A=\left( \frac { 4m+n }{ 4m } { x }_{ 1 },0 \right) \quad B=\left( 0,\frac { 4m+n }{ n } .{ y }_{ 1 } \right) $$
    Let $$P$$ divides $$AB$$ in ratio $$\displaystyle \mu :1$$
    $$\displaystyle \therefore \quad { x }_{ 1 }=\frac { \mu .0+1.\left( \dfrac { 4m+n }{ 4m }  \right) { x }_{ 1 } }{ \mu +1 } $$
    $$\displaystyle\therefore 4m+n=4m\left( \mu +1 \right) $$
    Also $$\displaystyle \mu \left( 4m+n \right) =n\left( \mu +1 \right)$$
    $$\displaystyle\therefore \quad \mu =\frac { n }{ 4m } $$
    $$\displaystyle \therefore \quad \lambda =4$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now