$$\displaystyle { x }^{ 2m }{ y }^{ \tfrac { n }{ 2 } }={ a }^{ \tfrac { 4m+n }{ 2 } }$$
$$\displaystyle 2m\ln x +\frac { n }{ 2 } \ln y=\frac { 4m+n }{ 2 }\ln a$$
$$\displaystyle \frac { \left( 2m \right) }{ x } +\left( \frac { n }{ 2 } \right) \frac { 1 }{ y } \frac { dy }{ dx } =0$$
$$\displaystyle \frac { dy }{ dx } =\left( \frac { -2m }{ x } \right) \frac { 2y }{ n } $$
Let $$P$$ be the point $$\displaystyle \left( { x }_{ 1 },{ y }_{ 1 } \right) $$
So equation of tangent is
$$\displaystyle y-{ y }_{ 1 }=\left( \frac { -4m }{ n } .\frac { { y }_{ 1 } }{ { x }_{ 1 } } \right) \left( x-{ x }_{ 1 } \right) $$.......(i)
Let Tangents meets the axes at $$A$$ and $$B$$ respectively
$$\displaystyle A=\left( \frac { 4m+n }{ 4m } { x }_{ 1 },0 \right) \quad B=\left( 0,\frac { 4m+n }{ n } .{ y }_{ 1 } \right) $$
Let $$P$$ divides $$AB$$ in ratio $$\displaystyle \mu :1$$
$$\displaystyle \therefore \quad { x }_{ 1 }=\frac { \mu .0+1.\left( \dfrac { 4m+n }{ 4m } \right) { x }_{ 1 } }{ \mu +1 } $$
$$\displaystyle\therefore 4m+n=4m\left( \mu +1 \right) $$ Also $$\displaystyle \mu \left( 4m+n \right) =n\left( \mu +1 \right)$$
$$\displaystyle\therefore \quad \mu =\frac { n }{ 4m } $$ $$\displaystyle \therefore \quad \lambda =4$$