Self Studies

Tangents and its Equations Test 25

Result Self Studies

Tangents and its Equations Test 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The minimum value of the polynomial.
    $$p(x)=3{ x }^{ 2 }-5x+2$$
    Solution
    $$p(x)=3{ x }^{ 2 }-5x+2$$
    $$=3\left( x2-\frac { 5 }{ 3 } x+\frac { 2 }{ 3 }  \right) $$
    $$=3\left[ { x }^{ 2 }-\frac { 5 }{ 3 } x+\left( { \frac { 5 }{ 6 }  } \right) ^{ 2 }-\left( { \frac { 5 }{ 6 }  } \right) ^{ 2 }+\frac { 2 }{ 3 }  \right] $$
    $$=3\left[ \left( { x-\frac { 5 }{ 6 }  } \right) ^{ 2 }-\frac { 25 }{ 36 } +\frac { 2 }{ 3 }  \right] $$
    $$=3\left[ \left( { x-\frac { 5 }{ 6 }  } \right) ^{ 2 }+\frac { -25+24 }{ 36 }  \right] $$
    $$=3\left[ \left( { x-\frac { 5 }{ 6 }  } \right) ^{ 2 }-\frac { 1 }{ 36 }  \right] =3\left( { x-\frac { 5 }{ 6 }  } \right) ^{ 2 }-\frac { 1 }{ 12 } $$
  • Question 2
    1 / -0
    If the tangent to the curve $$x = a(8 + sin \theta), y = a(1 + cos \theta )$$ at $$\theta = \displaystyle \frac{\pi}{3}$$ makes an angle $$\alpha$$ with x-axis, then $$\alpha$$ is equal to
    Solution
    $$x=a(8+\sin \theta)$$

    $$\frac{d x}{d \theta}=a \cos \theta$$

    $$y=a(1+\cos \theta)$$
    $$\frac{d y}{d \theta}=-a \sin \theta$$

    Now,
    $$\frac{d y}{d \theta}=-a \sin \theta$$
    $$\frac{d x}{d \theta}=a \cos \theta$$
    $$\frac{d y}{d x}=-\tan \theta$$
    $$\frac{d y}{d x}\left(\operatorname{at} \theta=\frac{\pi}{3}\right)=-\sqrt{3}=m$$

    Now,
    $$m=\tan \alpha$$
    $$\Rightarrow \tan \alpha=-\sqrt{3}$$

    Hence,
    $$\alpha=\frac{2 \pi}{3}$$
  • Question 3
    1 / -0
    The curve which passes through $$(1, 2)$$ and whose tangent at any point has a slope that is half of slope of the line joining origin to the point of contact, is -
    Solution

    Let the arbitrary point be $$x,y.$$
    Now the slope of the line joining the origin and the point is 
    $$=\dfrac{y-0}{x-0}$$
    $$=\dfrac{y}{x}$$.
    The equation of the curve
    $$y=f(x)$$.
    Now slope of the tangent 
    $$=\dfrac{dy}{dx}$$
    $$=\dfrac{y}{2x}$$ ... as per the given condition.
    Hence
    $$2\dfrac{dy}{y}=\dfrac{dx}{x}$$
    Integrating both sides we get 
    $$2\ln y=\ln x+\ln c$$
    Now $$y_{x=1}=2$$
    Hence
    $$2\ln (2)=\ln (1)+\ln (c)$$
    Or 
    $$c=2^{2}=4$$
    Hence
    $$2\ln y=\ln x+\ln 4$$
    Or 
    $$\ln (y^{2})=\ln 4x$$
    Or 
    $$y^{2}=4x$$ is the required equation.
    This is an equation of parabola.

  • Question 4
    1 / -0
    A curve $$\displaystyle y=f\left( x \right) ;\left( y>0 \right) $$  passes thorugh $$(1,1)$$ and at point $$\displaystyle P(x,y)$$ tangents cuts x-axis and y-axis at A and B respectively. If P divides AB  internally in the ratio $$3 : 2$$, then the value of $$\displaystyle f\left( \frac { 1 }{ 8 }  \right) $$ is
    Solution
    $$\displaystyle \frac { dy }{ dx } =-\frac { k }{ h } =-\frac { 2y }{ 3x } $$
    $$\displaystyle \Rightarrow \quad 3\frac { dy }{ y } +2\frac { dx }{ x } =0$$
    $$\displaystyle \Rightarrow \quad 3\ln { y }^{ 3 }{ x }^{ 3 }=C$$
    $$\displaystyle \because \quad $$passing through $$(1,1)$$
    $$\displaystyle \Rightarrow \quad c=0$$
    $$\displaystyle \Rightarrow \quad { y }^{ 3 }{ x }^{ 2 }=1$$
    at $$\displaystyle x=\frac { 1 }{ 8 }$$
    $$ \Rightarrow \quad y=4$$
  • Question 5
    1 / -0
    The slope of the tangent to the curve $$x={t}^{2}+3t-8$$, $$y=2{t}^{2}-2t-5$$ at the point $$(2,-1)$$ is
    Solution
    Slope to any curve is given by $$\dfrac{dy}{dx}$$

    Here, $$\cfrac{dx}{dt}=2t+3$$    ...(1) 
    And $$\cfrac{dy}{dt}=4t-2$$       ...(2)
    Dividing (2) by (1), we get $$\cfrac {dy}{dx} = \cfrac{\frac{dy}{dt}}{\frac{dx}{dt}}$$
    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{4t-2}{2t+3}$$
    At point $$(2,-1)$$, $$t=2$$
    So slope is given by,
    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{4\times 2-2}{2\times 2+3}=\dfrac{6}{7}$$
  • Question 6
    1 / -0
    The line $$y=mx+1$$ is a tangent to the curve $${y}{^2}=4x$$, if the value of $$m$$ is
    Solution
    Lets put $$y=mx+1$$ in $${y}^{2}=4x$$ we get
    $${(mx+1)}^{2}=4x$$
    $$\Rightarrow {m}^{2}{x}^{2}+1+2mx-4x=0$$
    Tangent touches a curve at one point so descriminant of the equation should be zero. 
    $$\Rightarrow {(2m-4)}^{2}-4\times 1\times {m}^{2}=0$$
    $$\Rightarrow 4{m}^{2}+16-16m-4{m}^{2}=0$$
    $$\Rightarrow m=1$$
  • Question 7
    1 / -0
    Angle between $${ y }^{ 2 }=x$$ and $${ x }^{ 2 }=y$$ at the origin is
    Solution
    It is clear from the graph that both the curves have a tangent at the coordinate axes, so the angle between the curves is $$\dfrac { \pi  }{ 2 } $$.

    Alternative
    Given curves are $${ y }^{ 2 }=x$$ and $${ x }^{ 2 }=y$$

    On differentiating with respect to $$x$$, we get

    $$2y\dfrac { dy }{ dx } =1$$ and $$2x=\dfrac { dy }{ dx } $$

    $$\Rightarrow \dfrac { dy }{ dx } =\dfrac { 1 }{ 2y } $$ and $$\dfrac { dy }{ dx } =2x$$

    At $$\left( 0,0 \right) $$

    $${ m }_{ 1 }=\dfrac { dy }{ dx } =\infty $$ and $${ m }_{ 2 }=\dfrac { dy }{ dx } =0$$

    $$\therefore \tan { \theta  } =\dfrac { { m }_{ 2 }-{ m }_{ 1 } }{ 1+{ m }_{ 1 }{ m }_{ 2 } } =\infty $$

    $$\Rightarrow \theta =\dfrac { \pi  }{ 2 } $$

  • Question 8
    1 / -0
    If the line $$\alpha\,x+by+c=0$$ is a tangent to the curve $$xy=4$$, then
    Solution
    Slope of line $$ax+by+c=0$$ is
    $$\Rightarrow\;-\dfrac{a}{b}$$
    $$y=\dfrac{4}{x}=1,\,\dfrac{dy}{dx}=-\dfrac{4}{x^2}$$,
    $$-\dfrac{a}{b}=-\dfrac{4}{x^2}\Rightarrow\,\dfrac{a}{b}=\dfrac{4}{x^2} > 0$$
    $$a < 0,\,b < 0$$
  • Question 9
    1 / -0
    Let $$y=e^{x^2}$$ and $$y=e^{x^2}\sin\, x$$ be two given curves. Then, angle between the tangents to the curves at any point their intersection is 
    Solution
    For intersecting points, $$e^{x^2}=e^{x^2}\sin\,x$$
    $$\Rightarrow e^{x^2}(\sin x-1)=0$$
    $$\Rightarrow e^{x^2}=0$$ or $$\sin\,x=1$$

    But $$e^{x^2}\neq 0\Rightarrow \sin x=1$$
    $$\Rightarrow x=\dfrac{\pi}{2}$$

    Now, 
    $$y=e^{x^2}$$ 

    $$\therefore \dfrac{dy}{dx}=e^{x^2}.2x=2xe^{x^2}$$         $$[\because \sin\,x=1, \cos \, x = 0]$$ 

    Since, both the curves has equal slope.
    Hence, angle between the tangents at intersecting point is $$0$$.
  • Question 10
    1 / -0
    The slope at any point of a curve $$y=f\left( x \right) $$ is given by $$\dfrac { dy }{ dx } =3{ x }^{ 2 }$$ and it passes through $$\left( -1,1 \right) $$. The equation of the curve is
    Solution
    Given, $$\dfrac { dy }{ dx } =3{ x }^{ 2 }$$
    $$\Rightarrow dy=3{ x }^{ 2 }dx$$
    On integrating, we get
    $$y=\dfrac { 3{ x }^{ 3 } }{ 3 } +c$$
    $$\Rightarrow y={ x }^{ 3 }+c$$
    It passes through $$\left( -1,1 \right) $$.
    $$\therefore 1={ \left( -1 \right)  }^{ 3 }+c$$
    $$\Rightarrow c=2$$
    $$\therefore y={ x }^{ 3 }+2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now