Self Studies

Tangents and its Equations Test 26

Result Self Studies

Tangents and its Equations Test 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The abscissa of the points, where the tangent to curve $$y={x}^{3} - 3{x}^{2} - 9x+5$$ is parallel to x-axis, are
    Solution
    Given, $$y={ x }^{ 3 }-3{ x }^{ 2 }-9x+5$$
    $$\Rightarrow \dfrac { dy }{ dx } =3{ x }^{ 2 }-6x-9$$
    We know that, this equation gives the slope of the tangent to the curve. The tangent is parallel to x-axis,
    $$\therefore       \dfrac { dy }{ dx } =0$$
    $$\Rightarrow    3{ x }^{ 2 }-6x-9=0$$
    $$\Rightarrow x=-1,3$$
  • Question 2
    1 / -0
    Suppose that the equation $$f\left( x \right) ={ x }^{ 2 }+bx+c=0$$ has two distinct real roots $$\alpha $$ and $$\beta $$. The angle between the tangent to the curve $$y=f\left( x \right) $$ at the point $$\left( \dfrac { \alpha +\beta  }{ 2 } ,f\left( \dfrac { \alpha +\beta  }{ 2 }  \right)  \right) $$ and the positive direction of the $$x$$-axis is
    Solution
    Since, $$\alpha $$ and $$\beta $$ are the roots of 
    $$f\left( x \right) ={ x }^{ 2 }+bx+c$$
    $$\therefore \alpha +\beta =-b$$ and $$\alpha \beta =c$$
    $$\therefore f\left( \dfrac { \alpha +\beta  }{ 2 }  \right) ={ \left( \dfrac { \alpha +\beta  }{ 2 }  \right)  }^{ 2 }+b\left( \dfrac { \alpha +\beta  }{ 2 }  \right) +c$$
          $$={ \left( -\dfrac { b }{ 2 }  \right)  }^{ 2 }+b\left( -\dfrac { b }{ 2 }  \right) +c$$
          $$=\dfrac { { b }^{ 2 } }{ 4 } -\dfrac { { b }^{ 2 } }{ 2 } +c=-\dfrac { { b }^{ 2 } }{ 4 } +c$$

    Now, $$\dfrac { dy }{ dx } =f^{ \prime  }\left( x \right) =2x+b$$

    At point, $$\left( \dfrac { \alpha +\beta  }{ 2 } ,f\left( \dfrac { \alpha +\beta  }{ 2 }  \right)  \right) $$, i.e., $$\left( -\dfrac { b }{ 2 } ,-\dfrac { { b }^{ 2 } }{ 4 } +c \right) $$,

    $$\dfrac { dy }{ dx } =2\left( -\dfrac { b }{ 2 }  \right) +b=0$$

    Hence, the slope of the tangent to the curve and the positive direction of $$x$$-axis is $${ 0 }^{ }$$.
  • Question 3
    1 / -0
    The points on the curve $$9{y}^{2}={x}^{3}$$, where the normal to the curve makes equal intercepts with the axes are
    Solution
    Let the point on curve be $$(h,k)$$
    $$y^2= \dfrac{x^3}{9}\\
    2y.\dfrac{dy}{dx}= \dfrac{1}{9} .3 x^2\\
    \therefore \dfrac{dy}{dx}= \dfrac{x^2}{6y}$$
    $$\dfrac{dy}{dx}$$ gives slope of curve at given point
    $$\dfrac{dy}{dx}\;at\;(h,k) = \dfrac{h^2}{6k}$$
    but this is the slope of tangent and we need slope of normal
    As we know that slope of normal$$\times$$ slope of tangent is $$-1$$
    $$\therefore$$ slope of normal is $$\dfrac{-6k}{h^2}$$
    Given in question that normal makes equal intercepts on axes  which means slope of normal is either $$1$$ or $$-1$$
    $$-6k=h^2$$ and $$6k=h^2$$
    Now go through the option you will that option A satisfy our equation
  • Question 4
    1 / -0
    The coordinates of the point P on the curve $$x = a(\theta + \sin \theta), y = a(1 - \cos \theta)$$ where the tangent is inclined at an angle $$\dfrac {\pi}{4}$$ to the x-axis, are
    Solution
    $$x = a(\theta + \sin \theta), y = a(1 - \cos \theta)$$
    $$\dfrac {dy}{d\theta} = a\sin \theta, \dfrac {dx}{d\theta} = a(1 + \cos \theta)$$
    $$\dfrac {dy}{dx} = \dfrac {\sin \theta}{1 + \cos \theta} = \tan \dfrac {\theta}{2}$$
    $$\Rightarrow \tan \dfrac {\theta}{2} = 1$$
    $$\Rightarrow \dfrac {\theta}{2} = \dfrac {\pi}{4} \Rightarrow \theta = \dfrac {\pi}{2}$$
    $$x = a(\theta + \sin \theta)$$
    $$y = a(1 - \cos \theta)$$
    $$x = a (\theta + \sin \theta)$$
    $$y = a(1 - \cos \theta)$$
    $$(x, y) \equiv \left (a \left (\dfrac {\pi}{2} + 1\right ), a\right )$$.
  • Question 5
    1 / -0
    Slope of Normal to the curve $$y = x^{2} - \dfrac {1}{x^{2}}$$ at $$(-1, 0)$$ is
    Solution
    We have: $$y=x^2-\dfrac{1}{x^2}=x^2-x^{-2}$$
    Now differentiate,
    $$\dfrac{dy}{dx}=2x+2x^{-3}$$
    So slope of tangent at $$(-1,0)$$ is
    $$\dfrac{dy}{dx}\bigg|_{x=-1}=2(-1)+2(-1)^3=-2-2=-4$$
    Hence slope of normal at the same point is $$=\dfrac{1}{4}$$

    Note: Normal and tangent are perpendicular to each other 
  • Question 6
    1 / -0
    The slope of the tangent to the curve $$x=3t^2+1, y=t^3-1$$ at $$x=1$$ is 
    Solution
    Given, $$x=3t^2+1, y=t^3-1$$
    Slope of the tangent to the given curve is $$\dfrac{dy}{dx} = \dfrac{dy}{dt} \times \dfrac{dt}{dx}$$
    $$= 3t^2 \times \dfrac{1}{6t}$$
    $$=\dfrac{t}{2}$$
    Since the slope has to be calculated at $$x = 1, $$ i.e. at $$3t^2 + 1 = 1$$, we get $$t = 0$$
    Thus, the required slope is $$0.$$
  • Question 7
    1 / -0
    The equation of one of the curves whose slope at any point is equal to $$y+2x$$ is
    Solution
    Given, $$\dfrac{dy}{dx}=y+2x$$
    Put $$y+2x=z$$
    $$\Rightarrow\;\dfrac{dy}{dx}+2=\dfrac{dz}{dx}$$
    $$\Rightarrow\;\dfrac{dy}{dx}=\dfrac{dz}{dx}-2\;\dots(ii)$$
    From Eqs. (i) and (ii)
    $$\dfrac{dz}{dx}-2=z$$
    $$\Rightarrow\;\int\dfrac{dz}{.z+2}=\int\,dx$$
    $$\Rightarrow\;log(z+2)=x+c$$
    $$\Rightarrow\;log(y+2x+2)=x+c$$
    $$\Rightarrow\;y+2x+2=e^{x+c}$$
    $$\Rightarrow\;y+2x+2=e^x.e^c$$
    $$\Rightarrow\;y=2[e^x-x-1]$$ 
  • Question 8
    1 / -0
    The slope of the tangent to the curve $$x={t}^{2}+3t-8$$, $$y=2{t}^{2}-2t-5$$ at the point $$(2,-1)$$ is
    Solution
    We have $$x=t^2+3t-8$$ and $$y=2t^2-2t-5$$
    $$\Rightarrow 2x-y=2(t^2+3t-8)-(2t^2-2t-5)=8t-11$$
    Now substitute the point $$(2,-1)$$ to get value of $$t$$
    $$\Rightarrow 2(2)-(-1)=8t-11\Rightarrow 5+11=8t\Rightarrow t=2$$
    Now differentiate $$x$$ and $$y$$ w.r.t. 
    $$\Rightarrow \dfrac{dx}{dt}=2t+3$$ and $$\dfrac{dy}{dt}=4t-2$$
    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{\frac{dy}{dt}}{\frac{dx}{dt}}=\dfrac{4t-2}{2t+3}$$
    $$\therefore \dfrac{dy}{dx}\bigg|_{t=2}=\dfrac{4(2)-2}{2(2)+3}=\dfrac{6}{7}$$
  • Question 9
    1 / -0
    If $$\Delta$$ is the area of the triangle formed by the positive x-axis and the normal and tangent to the circle $$x^{2} + y^{2} = 4$$ at $$(1, \sqrt {3})$$, then $$\Delta =$$
    Solution
    $$x^{2} + y^{2} = 4$$
    Differentiating wrt x, we get
    $$\dfrac {dy}{dx} = -\dfrac {x}{y}, m = \dfrac {-1}{\sqrt {3}}$$
    Equation of tangent: $$ y - \sqrt {3} = \dfrac {-1}{\sqrt {3}} (x - 1)$$
    $$\Rightarrow \sqrt {3}y - 3 = -x + 1$$
    $$\Rightarrow x + \sqrt {3}y = 4$$
     
    $$Area = \left |\dfrac {y_{1}^{2}(1 + m^{2})}{2m}\right | = 2\sqrt {3}$$
  • Question 10
    1 / -0
    If the tangent to the curve $$2y^{3} = ax^{2} + x^{3}$$ at the point $$(a, a)$$ cuts off intercepts $$\alpha$$ and $$\beta$$ on the coordinate axes where $$\alpha^{2} + \beta^{2} = 61$$ then the value of '$$a$$' is equal to
    Solution
    $$2y^{3} = ax^{2} + x^{3}$$

    Diff. w.r.t $$x$$

    $$6y^{2} \dfrac {dy}{dx} = 2ax + 3x^{2}$$

    $$\dfrac {dy}{dx}|_{(a, a)} = \dfrac {2a^{2} + 3a^{2}}{6a^{2}} = \dfrac {5}{6}$$ 

    Hence tangent at $$(a,a)$$ is,

    $$y-a =\dfrac{5}{6}(x-a)\Rightarrow 6y-6a=5x-5a\Rightarrow 5x-6y+a=0$$

    $$\therefore x - intercept = \dfrac {-a}{5} = \alpha$$

    and $$y - intercept = \dfrac {a}{6} = \beta$$

    $$\therefore \alpha^{2} + \beta^{2} = 61\Rightarrow \dfrac {a^{2}}{25} + \dfrac {a^{2}}{36} = 61$$

    $$\dfrac{61a^2}{900}=61\Rightarrow a^2=900$$

    $$\therefore  a = \pm 30$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now