Self Studies

Tangents and its Equations Test 29

Result Self Studies

Tangents and its Equations Test 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation of the tangent to the curves $$x=t\cos t$$ and $$y=t\sin t$$ at the origin is?
    Solution
    We have,
    $$x=t\cos t $$ and $$y=t\sin t$$
    $$\therefore \displaystyle\frac{dx}{dt}=\cos t -t \sin t$$
    and $$\displaystyle\frac{dy}{dt}=\sin t +t\cos t$$
    At the origin, we have
    $$x=0, y=0$$
    $$\Rightarrow t\cos t=0$$
    and $$t\sin t=0$$ 
    $$\Rightarrow t=0$$
    The slope of the tangent at $$t=0$$ is

    $$\displaystyle\frac{dy}{dx}=\left(\displaystyle\frac{dy/dt}{dx/dt}\right)_{t=0}=\left(\displaystyle\frac{\sin t+t \cos t}{\cos t - t\sin t}\right)_{t=0}=0$$
    So, the equation of the tangent at the origin is $$y-0=0(x-0)$$
    $$\Rightarrow y=0$$.
  • Question 2
    1 / -0
    Let $$f(x)=2{ x }^{ 3 }-5{ x }^{ 2 }-4x+3,\cfrac { 1 }{ 2 } \le x\le 3$$. The point at which the tangent to the curve is parallel to the X-axis is
    Solution
    Given, $$f(x)=2{ x }^{ 3 }-5{ x }^{ 2 }-4x+3$$

    $$f'(x)=6{x}^{2}-10x-4$$

    If tangent is parallel to X-axis, then $$\cfrac { dy }{ dx } =0\quad $$

    $$\Rightarrow 6{ x }^{ 2 }-10x-4=0\quad $$

    $$\Rightarrow x=\cfrac { 5\pm \sqrt { 25+24 }  }{ 6 } =\cfrac { 5\pm 7 }{ 6 } $$

    $$\Rightarrow x=2,\cfrac { -1 }{ 3 } $$

    $$\quad \therefore y=f(x)=2{ (2) }^{ 3 }-5{ (2) }^{ 2 }-4(2)+3=-9$$
  • Question 3
    1 / -0
    The equation of the tangent to the curve $$y={ x }^{ 3 }-6x+5$$ at $$(2,1)$$ is
    Solution
    The equation of the curve
    $$y={ x }^{ 3 }-6x+5$$
    $$\Rightarrow \cfrac { dy }{ dx } =3{ x }^{ 2 }-6$$
    $$\Rightarrow { \left( \cfrac { dy }{ dx }  \right)  }_{ 2,1 }=6$$
    Now, equation of the tangent at $$(2,1)$$ is
    $$(y-1)=6(x-2)$$
    $$\Rightarrow  6x-y-11=0$$
  • Question 4
    1 / -0
    The slope of the normal to the curve $$x=1-a\sin { \theta  } $$, $$y=b\cos ^{ 2 }{ \theta  }$$ at $$ \theta =\dfrac { \pi  }{ 2 } $$ is
    Solution
    Given, $$x=1-a\sin { \theta  } $$ and $$y=b\cos ^{ 2 }{ \theta  }$$
    On differentiating with respect to $$\theta $$, we get
    $$\dfrac { dx }{ d\theta  } =-a\cos { \theta  }$$ 
    and $$ \dfrac { dy }{ d\theta  } =2b\cos { \theta  } \left( -\sin { \theta  }  \right)$$
    Then, $$ \dfrac { dy }{ dx } =\dfrac { { dy }/{ d\theta  } }{ { dx }/{ d\theta  } } =\dfrac { 2b }{ a } \sin { \theta  }$$
    $$ \therefore$$ Slope of normal at the point $$ \theta =\dfrac { \pi  }{ 2 }$$ is 
    $$ -\dfrac { dx }{ dy } =-\dfrac { 1 }{ { dy }/{ dx } } $$
           $$=-\dfrac { 1 }{ \dfrac { 2b }{ a } \sin { \left( \dfrac { \pi  }{ 2 }  \right)  }  } =-\dfrac { a }{ 2b } $$
  • Question 5
    1 / -0
    The equation of the tangent to the curve $$y=4e^{-x/4}$$ at the point where the curve crosses Y-axis is equal to
    Solution
    As the curve crosses Y-axis i.e. $$x=0$$
    $$y=4e^{-0} \Rightarrow y = 4$$ 
    Given,   $$y=4e^{-x/4}$$
    $$\Rightarrow \dfrac{dy}{dx} = 4e^{-x/4}\left(-\dfrac{1}{4}\right) = -e^{-x/4}$$
    $$\Rightarrow \left(\dfrac{dy}{dx}\right)_{0,4} = -e^{-0}=-1$$
    $$\therefore$$ Equation of tangent at $$(0, 4)$$ is $$y-4=-1(x-0)$$
    $$\implies x+y=4$$
  • Question 6
    1 / -0
    The equation of tangent of the curve $$y = be^{-x/a}$$ at the point, where the curve meet y-axis is
    Solution
    We have
    $$y = be^{-x/a}$$
    $$\therefore \dfrac {dy}{dx} = \dfrac {-b}{a}e^{-x/a} .... (i)$$
    Since, the curve meet y-axis. Hence, $$x = 0$$
    $$\Rightarrow y = be^{-0/a} = b$$
    Hence, point $$(0, b)$$ is on y-axis.
    $$\therefore \left (\dfrac {dy}{dx}\right )_{(0, b)} = -\dfrac {b}{a}e^{-0/a} = -\dfrac {b}{a}$$
    $$\therefore$$ Equation of tangent at $$(0, b)$$ is
    $$y - b = -\dfrac {b}{a} (x - 0)$$
    $$\Rightarrow ay - ab = -bx$$
    $$\Rightarrow bx + ay - ab = 0$$.

  • Question 7
    1 / -0
    The tangents to curve $$y={ x }^{ 3 }-2{ x }^{ 2 }+x-2$$ which are parallel to straight line $$y=x$$, are
    Solution
    Given,
    $$y={ x }^{ 3 }-2{ x }^{ 2 }+x-2$$

    On differentiating both sides with respect to $$x$$, we get

    $$\dfrac { dy }{ dx } =3{ x }^{ 2 }-4x+1$$

    and $$y=x$$

    $$\Rightarrow \dfrac { dy }{ dx } =1$$

    $$\therefore$$ Slope of tangent will be $$ 3{ x }^{ 2 }-4x+1$$.

    Since, the tangent is parallel to line $$y=x$$.

    $$\therefore 3{ x }^{ 2 }-4x+1=1$$

    $$\Rightarrow 3{ x }^{ 2 }-4x=0$$

    $$\Rightarrow x\left( 3x-4 \right) =0$$

    $$\Rightarrow x=0,\dfrac { 4 }{ 3 }$$

    When $$x=0$$, then $$y=-2$$

    When $$x=\dfrac { 4 }{ 3 } $$, then $$y=\dfrac { -50 }{ 27 }$$

    Now, equation of tangents at point $$ \left( 0,-2 \right)$$ is

    $$ y-{ y }_{ 1 }=\dfrac { dy }{ dx } \left( x-{ x }_{ 1 } \right)$$

    $$ \Rightarrow y+2=1\left( x-0 \right)$$

    $$ \Rightarrow y+2=x$$

    $$\Rightarrow x-y=2$$              ...(i)

    and equation of tangents at point $$\left( \dfrac { 4 }{ 3 } ,-\dfrac { 50 }{ 27 }  \right) $$ is

    $$y-{ y }_{ 1 }=\dfrac { dy }{ dx } \left( x-{ x }_{ 1 } \right) $$

    $$y+\dfrac { 50 }{ 27 } =x-\dfrac { 4 }{ 3 }$$

    $$ \Rightarrow x-y=\dfrac { 50 }{ 27 } +\dfrac { 4 }{ 3 }$$

    $$ \Rightarrow x-y=\dfrac { 50+36 }{ 27 } $$

    $$\Rightarrow x-y=\dfrac { 86 }{ 27 } $$              ....(ii)

    Hence, equations (i) and (ii) are required equations of the tangents.
  • Question 8
    1 / -0
    The slope of tangent to the curve $$ x=t^2 + 3t - 8, y = 2t^2 - 2t - 5 $$ at the point $$(2, -1)$$ is :
    Solution
    Given curves are $$ x=t^{2} + 3t - 8$$ ... $$(i)$$ and $$y = 2t^{2} - 2t - 5 $$ ... $$(ii)$$
    At $$(2,-1),$$ From $$(i)$$
    $$t^{2}+3t-10=0\implies t=2$$ or $$t=-5$$
    From $$(ii)$$
    $$2t^{2}-2t-4=0\implies t^{2}-t-2=0\implies t=2$$ or $$t=-1$$
    From both the solutions, we get $$t=2$$

    Differentiating both the equations w.r.t. $$t$$, we get
    $$\dfrac{dx}{dt}=2t+3$$ ........ $$(iii)$$
    $$\dfrac{dy}{dt}=4t-2$$ ....... $$(iv)$$

    Now, $$ \dfrac{dy}{dx} = \dfrac {\dfrac{dy}{dt}}{\dfrac{dx}{dt}}$$

    $$ = \dfrac {4t-2}{2t+3}$$ .... From $$(iii)$$ and $$(iv)$$
    $$\therefore \dfrac{dy}{dx} = \dfrac {4t-2}{2t+3}$$ is the slope of tangent to the given curve
    $$\therefore \left|\dfrac{dy}{dx}\right|_{(2,-1)} = \left|\dfrac {4t-2}{2t+3}\right|_{t=2}=\dfrac{8-2}{4+3}=\dfrac{6}{7}$$ is the slope  of tangent to the given curve at $$(2,-1)$$
  • Question 9
    1 / -0
    The points at which the tangent to the curve $$y = x^3 - 3x^2 - 9x + 7$$ is parallel to the x-axis are 
    Solution
    Tangent to the curve is parallel to the axis is when slope of the tangent is 0. 
    $$\therefore$$ Equation of the curve is
    $$y=x^3-3x^2-9x+7=0$$ ...... $$(i)$$
    $$\therefore \dfrac{dy}{dx}=3x^2-6x-9$$

    Now, the tangent is parallel to x-axis, then slope of the tangent is zero or we can say that $$\dfrac{dy}{dx}=0$$.

    $$\Rightarrow 3x^2-6x-9=0$$
    $$\Rightarrow 3(x^2-2x-3)=0$$
    $$\Rightarrow (x-3)(x+1)=0$$
    $$\Rightarrow x=3, -1$$

    When $$x=3$$, then from Eq. $$(i),$$ we get
    $$y=(3)^3-(3)\cdot (3)^2-9\cdot 3+7$$
    $$=27-27-27+7=-20$$

    When $$x =-1,$$ then from Eq. $$(i),$$ we get
    $$y=(-1)^3-3(-1)^2-9(-1)+7$$
    $$=-1-3+9+7=12$$
    Hence, the points at which the tangent is parallel to x-axis are $$(3, -20)$$ and $$(-1, 12)$$.
  • Question 10
    1 / -0
    The slope of the tangent to the curve $$y=3{ x }^{ 2 }-5x+6$$ at $$\left( 1,4 \right) $$ is
    Solution
    Given curve is
    $$y=3{ x }^{ 2 }-5x+6\Rightarrow \dfrac { dy }{ dx } =6x-5$$
    $$\therefore $$ Slope of tangent at 
    $$\left( 1,4 \right) =6\times 1-5=1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now