Given,
$$y={ x }^{ 3 }-2{ x }^{ 2 }+x-2$$
On differentiating both sides with respect to $$x$$, we get
$$\dfrac { dy }{ dx } =3{ x }^{ 2 }-4x+1$$
and $$y=x$$
$$\Rightarrow \dfrac { dy }{ dx } =1$$
$$\therefore$$ Slope of tangent will be $$ 3{ x }^{ 2 }-4x+1$$.
Since, the tangent is parallel to line $$y=x$$.
$$\therefore 3{ x }^{ 2 }-4x+1=1$$
$$\Rightarrow 3{ x }^{ 2 }-4x=0$$
$$\Rightarrow x\left( 3x-4 \right) =0$$
$$\Rightarrow x=0,\dfrac { 4 }{ 3 }$$
When $$x=0$$, then $$y=-2$$
When $$x=\dfrac { 4 }{ 3 } $$, then $$y=\dfrac { -50 }{ 27 }$$
Now, equation of tangents at point $$ \left( 0,-2 \right)$$ is
$$ y-{ y }_{ 1 }=\dfrac { dy }{ dx } \left( x-{ x }_{ 1 } \right)$$
$$ \Rightarrow y+2=1\left( x-0 \right)$$
$$ \Rightarrow y+2=x$$
$$\Rightarrow x-y=2$$ ...(i)
and equation of tangents at point $$\left( \dfrac { 4 }{ 3 } ,-\dfrac { 50 }{ 27 } \right) $$ is
$$y-{ y }_{ 1 }=\dfrac { dy }{ dx } \left( x-{ x }_{ 1 } \right) $$
$$y+\dfrac { 50 }{ 27 } =x-\dfrac { 4 }{ 3 }$$
$$ \Rightarrow x-y=\dfrac { 50 }{ 27 } +\dfrac { 4 }{ 3 }$$
$$ \Rightarrow x-y=\dfrac { 50+36 }{ 27 } $$
$$\Rightarrow x-y=\dfrac { 86 }{ 27 } $$ ....(ii)
Hence, equations (i) and (ii) are required equations of the tangents.