Self Studies

Tangents and its Equations Test 30

Result Self Studies

Tangents and its Equations Test 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The points on the graph $$ y = x^3 - 3x $$ at which the tangent is parallel to $$x$$-axis are :
    Solution
    Given, curve is $$y=x^3 - 3x$$     .....(i)
    On differentiating w.r.t. $$x$$, we get 
    $$ \dfrac {dy}{dx} = 3x^2 - 3 $$
    Since, tangent is parallel to $$x$$-axis.
    Therefore, $$  \dfrac {dy}{dx} = 0 $$
    $$\Rightarrow  3x^2 - 3 = 0$$
    $$ \Rightarrow x^2 = 1 $$
    $$ \Rightarrow x = \pm 1 $$ 
    From equation (i), we have
    When $$x=1, y = 1^3 - 3 (1) = -2 $$
    When $$4 x_1 = -1, y = (-1)^3 - 3 (-1) =2 $$
    Therefore, required points are $$ (1,-2) $$ and $$(-1,2) $$.
  • Question 2
    1 / -0
    If the tangent at $$(1,1)$$ on $${ y }^{ 2 }=x{ (2-x) }^{ 2 }$$ meets the curve again at $$P$$, then $$P$$ is
    Solution
    We have
    $$\Rightarrow { y }^{ 2 }={ x }^{ 3 }-4{ x }^{ 2 }+4x$$    .....(i)

    $$\Rightarrow 2y\cfrac { dy }{ dx } =3{ x }^{ 2 }-8x+4$$

    $$\Rightarrow \cfrac { dy }{ dx } =\cfrac { 3{ x }^{ 2 }-8x+4 }{ 2y } $$

    $$\Rightarrow { \left[ \cfrac { dy }{ dx }  \right]  }_{ (1,1) }=\cfrac { 3-8+4 }{ 2 } =-\cfrac { 1 }{ 2 } $$

    The equation of the tangent at $$(1,1)$$ is

    $$-1=-\cfrac { 1 }{ 2 } (x-1)$$

    $$\Rightarrow x+2y-3=0$$    .....(ii)

    On solving Eqs. (i) and (ii) we get

    $$x=9/4$$ and $$y=3/8$$

    Hence,the coordinates of $$P$$ are $$\left( \cfrac { 9 }{ 4 } ,\cfrac { 3 }{ 8 }  \right) $$.
  • Question 3
    1 / -0
    The tangent to the curve $$y=a{ x }^{ 2 }+bx$$ at $$\left( 2,-8 \right) $$ is parallel to $$X$$-axis. Then,
    Solution
    Given, $$y=a{ x }^{ 2 }+bx$$
    On differentiating with respect to $$x$$, we get
    $$\dfrac { dy }{ dx } =2ax+b$$
    At $$\left( 2,-8 \right) ,$$  $${ \left( \dfrac { dy }{ dx }  \right)  }_{ \left( 2,-8 \right)  }=4a+b$$
    Since tangent is parallel to $$X$$-axis.
    Thus $$ \dfrac { dy }{ dx } =0\Rightarrow b=-4a$$             ....(i)
    Now, point $$\left( 2,-8 \right)$$ is on the curve $$ y=a{ x }^{ 2 }+bx$$
    Therefore, $$ -8=4a+2b$$            ....(ii)
    On solving equations (i) and (ii), we get
    $$a=2,b=-8$$
  • Question 4
    1 / -0
    If the straight line $$ y -2x +1=0$$ is the tangent to the curve $$xy+ax+by=0$$ at $$x=1, $$ then the values of $$a$$ and $$b$$ are respectively :
    Solution

    Equation of tangent is $$y-2x+1=0$$

    It is tangent at $$x=1$$, so for $$x=1$$

    $$y-2(1)+1=0\\ \Rightarrow y=1$$

    So, its is tangent to the curve at $$(1,1)$$

    Slope of tangent $$= -\left (\dfrac{-2}{1}\right)=2$$

    $$xy+ax+by=0\\ y+x\dfrac { dy }{ dx } +a+b\dfrac { dy }{ dx } =0$$

    Now $$\dfrac { dy }{ dx } =2$$ at $$(1,1)$$

    $$1+1(2)+a+b(2)=0\\ \Rightarrow a+2b=-3$$     .....(i)

    $$(1,1)$$ also lies on the curve $$xy+ax+by=0$$

    $$\Rightarrow 1(1)+a(1)+b(1)=0\\ \Rightarrow a+b=-1$$     .......(ii)

    Solving (i) and (ii), we get

    $$\Rightarrow a=1,b=-2$$

    So, option E is correct.

  • Question 5
    1 / -0
    The slope of the normal to the curve $$x = t^{2} + 3t - 8$$ and $$y = 2t^{2} - 2t - 5$$ at the point $$(2, -1)$$ is
    Solution
    Given curves are
    $$x = t^{2} + 3t - 8$$
    $$\therefore \dfrac {dx}{dt} = 2t + 3$$
    and $$y = 2t^{2} - 2t - 5$$
    $$\therefore \dfrac {dy}{dt} = 4t - 2$$
    Slope of tangent $$= \dfrac {dy}{dx} = \dfrac {dy}{dx} \times \dfrac {dt}{dx} = \dfrac {4t - 2}{2t + 3} .... (i)$$
    Since, curve passes through the point $$(2, -1)$$.
    Therefore, $$t^{2} + 3t - 8 = 2$$ and $$2t^{2} - 2t - 5 = -1$$
    $$\Rightarrow t^{2} + 3t - 10 = 0$$
    and $$2t^{2} - 2t - 4 = 0$$
    $$\Rightarrow t^{2} + 5t - 2t - 10 = 0$$
    and $$t^{2} - t - 2 = 0$$
    $$\Rightarrow (t + 5)(t - 2) = 0$$ and $$(t^{2} - 2t + t - 2) = 0$$
    $$\Rightarrow t = -5, 2$$ and $$(t - 2)(t + 1) = 0$$
    $$\Rightarrow t = -5, 2$$ and $$t = -1, 2$$
    So, common value of $$t$$ is $$2$$.
    On putting $$t = 2$$ in Eq. (i), we get
    $$\left [\dfrac {dy}{dx}\right ]_{at\ t = 2} = \dfrac {4(2) - 2}{2(2) + 3} = \dfrac {6}{7}$$
    Slope of normal $$= \dfrac {-1}{\dfrac {dy}{dx}} = \dfrac {-1}{(6/7)} = -\dfrac {7}{6}$$.
  • Question 6
    1 / -0
    If the angle between the curves $$ y = 2^x $$ and $$ y=3^x $$ is $$ \alpha, $$ then the value of $$ \tan \alpha $$ is equal to :
    Solution
    Given curves are $$ y = 2^x $$ and $$ y =3^x $$
    The point of intersection is $$ 3^x = 2^x \Rightarrow x = 0 $$
    On differentiating w.r.t. $$x,$$ we get 
    $$ \dfrac {dy}{dx} = 2^x \log 2 = m_1 $$
    and $$ \dfrac {dy}{dx} = 3^x \log 3 = m_2 $$
    Therefore, $$  \tan \alpha = \dfrac {m_2 - m_1}{1 + m_1m_2} $$
    $$ = \dfrac {3^x \log 3 - 2^x \log 2 }{1+3^x \times 2^x \log 3 \times \log 2} $$
    At $$x=0$$, 
    $$\tan \alpha = \dfrac {3^0 \log 3 - 2^0 \log 2 }{1 + 3^0 \times 2^0 \log 2 \log 3 } $$
    $$ = \dfrac { \log \dfrac {3}{2} } { 1 + \log 2 \log 3 } $$
  • Question 7
    1 / -0
    The slope of the normal to the curve $$ y^3 - xy-8=0$$ at the point $$(0,2)$$ is equal to :
    Solution
    Given cure is $$ y^3 - xy - 8 = 0 $$
    On differentiating w.r.t. $$x,$$ we get 
    $$ 3y^2 \dfrac {dy}{dx} - x \dfrac {dy}{dx} - y - 0 =0 $$
    $$ \Rightarrow \dfrac {dy}{dx} (3y^2 - x) = y $$
    $$ \Rightarrow \dfrac {dy}{dx} = \dfrac {y} {(3y^2 - x) } $$
    $$ \Rightarrow \left( \dfrac  {dy}{dx} \right)_{(0,2)} = \dfrac {2}{3(2)^2 - 0} = \dfrac {1}{6} $$
    Therefore, the slope of the normal is $$  - \dfrac {1}{dy/dx} = -6 $$.
  • Question 8
    1 / -0
    The equation of the tangent to the curve $$\sqrt {\dfrac {x}{a}} + \sqrt {\dfrac {y}{b}} = 1$$ at the point $$(x_{1}, y_{1})$$ is $$\dfrac {x}{\sqrt {ax_{1}}} + \dfrac {y}{\sqrt {by_{1}}} = k$$. Then, the value of $$k$$ is
    Solution
    Given curve is
    $$\sqrt {\dfrac {x}{a}} + \sqrt {\dfrac {y}{b}} = 1 $$    ... (i)
    On differentiating w.r.t. to $$x$$, we get
    $$\dfrac {1}{\sqrt {a}} \cdot \dfrac {1}{2\sqrt {x}} + \dfrac {1}{\sqrt {b}} \cdot \dfrac {1}{2\sqrt {y}} \dfrac {dy}{dx} = 0$$
    $$\Rightarrow \dfrac {dy}{dx} = -\dfrac {\sqrt {b}\sqrt {y}}{\sqrt {a}\sqrt {x}} \Rightarrow \left [\dfrac {dy}{dx}\right ]_{(x_{1}, y_{1})} = \dfrac {-\sqrt {b}\sqrt {y_{1}}}{\sqrt {a}\sqrt {x_{1}}}$$
    Equation of tangent passing through the point $$(x_{1}, y_{1})$$ is
    $$(y - y_{1}) = \dfrac {-\sqrt {b}\sqrt {y_{1}}}{\sqrt {a}\sqrt {x_{1}}} (x - x_{1})$$
    $$\dfrac {y}{\sqrt {by_{1}}} - \dfrac {y_{1}}{\sqrt {by_{1}}} = -\dfrac {x}{\sqrt {ax_{1}}} + \dfrac {x_{1}}{\sqrt {ax_{1}}}$$
    $$\Rightarrow \dfrac {x}{\sqrt {ax_{1}}} + \dfrac {y}{\sqrt {by_{1}}} = \dfrac {x_{1}}{\sqrt {ax_{1}}} + \dfrac {y_{1}}{\sqrt {by_{1}}} = \sqrt {\dfrac {x_{1}}{a}} + \sqrt {\dfrac {y_{1}}{b}}$$
    $$\Rightarrow \dfrac {x}{\sqrt {ax_{1}}} + \dfrac {y}{\sqrt {by_{1}}} = 1$$ [from Eq. (i)]
    $$\left [\because at (x_{1}, y_{1}), \sqrt {\dfrac {x_{1}}{a}} + \sqrt {\dfrac {y_{1}}{b}} = 1\right ]$$
    But $$\dfrac {x}{\sqrt {ax_{1}}} + \dfrac {y}{\sqrt {by_{1}}} = k$$ (given)
    Therefore, $$k = 1$$
  • Question 9
    1 / -0
    The slope of the normal to the curve $$y = x^2 - \dfrac{1}{x^2}$$ at $$(-1, 0) $$ is 
    Solution
    Given curve is $$y = x^2 - \dfrac{1}{x^2}$$
    On differentiating both sides w.r.t. $$x$$, we get
    $$\dfrac{dy}{dx} = 2x + \dfrac{2}{x^3}$$
    At point $$(-1, 0)$$.
    $$\dfrac{dy}{dx} = 2(-1) + \dfrac{2}{(-1)^3} = -4$$
    Therefore, slope of normal to the curve
    $$= - \dfrac{1}{dy/dx}$$
    $$= - \dfrac{1}{-4} = \dfrac{1}{4}$$
  • Question 10
    1 / -0
    The point on the curve $$y = 5 + x - x^{2}$$ at which the normal makes equal intercepts is
    Solution
    Given curve is
    $$y = 5 + x - x^{2}$$     ..... (i)
    On differentiating w.r.t. $$x$$, we get
    $$\dfrac {dy}{dx} = 1 - 2x$$
    Slope of normal $$= \dfrac {-1}{(dy/dx)} = \dfrac {-1}{1 - 2x}$$
    $$= \dfrac {1}{2x - 1}$$     .... (ii)
    Since, normal makes equal intercepts.
    $$\therefore \theta = 135^{\circ}$$
    From Eq. (ii), we have
    $$\dfrac {1}{2x - 1} = \tan 135^{\circ} = -1$$
    $$\Rightarrow -2x + 1 = 1\Rightarrow x = 0$$
    Then, from Eq. (i), $$y = 5$$
    So, the required point is $$(0, 5)$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now