Self Studies

Tangents and its Equations Test 31

Result Self Studies

Tangents and its Equations Test 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A normal to parabola, whose inclination is $$30^o$$, cuts it again at an angle of.
    Solution

    Equation of normal in terms of parameter
    To parabola $$y^2=4ax$$ at $$(at^2, 2at)$$, the equation of normal is $$y=-tx+2at+at^3$$
    To parabola $$x^2=4ay$$ at $$(2at, at^2)$$ the equation of normal is $$x+ty=2at+at^3$$

    Let the normal $$P(at_1,2at_1)$$ by $$y= -t_1x + 2at_1+at_1^3$$
    $$\theta$$ $$=-t_1=$$ slope of normal
    It meets the curve at $$\theta$$ say $$(at_2^2,2at_2)$$
    Now angle between the normal and parabola $$=$$ Angle the normal and tangent at $$\theta$$ (i.e)  $$t_2= x + at_2^2$$

    $$\tan \phi$$ =$$\dfrac{m_1-m_2}{1+m_1m_2}$$
          
    $$=\dfrac{-t_1-\dfrac{1}{t_2}}{1+\dfrac{(-t_1)}{(-t_2)}}$$

    $$=\dfrac{-(t_1t_2+1)}{t_2-t_1}$$

    $$=\dfrac{-(t_1^2+1)}{t_2-t_1}$$

    $$=\dfrac{-(-t_1^2-1)}{\dfrac{-2(1+t_1^2)}{(t_1)}}$$
    $$=\dfrac{-t_1}{2}$$

    $${\tan}\phi=\dfrac{\tan\theta}{2}$$
    hence,
    $$\phi$$=$$\tan^{-1}\dfrac{\tan30^.}{2} = \tan^{-1}(\dfrac{1}{2\times3^{\tfrac{1}{2}}})$$

  • Question 2
    1 / -0
    If the slope of the tangent to the curve $$y=a{ x }^{ 3 }+bx+4$$ at $$(2,14) = 21$$, then the values of $$a$$ and $$b$$ are respectively
    Solution
    $$(2,14)$$ lies on the curve $$y=ax^3+bx+4$$
    => $$8a+2b+4=14$$
    => $$4a+b=5$$----(1)

    $$\dfrac{dy}{dx}=3ax^2+b|_{x=2}=21$$
    => $$12a+b=21$$--(2)

    Solving equations (1) and (2), we get $$a=2, b=-3$$
  • Question 3
    1 / -0
    The angle between the curves $$x^{2} + y^{2} = 25$$ and $$x^{2} + y^{2} - 2x + 3y - 43 = 0$$ at $$(-3, 4)$$ is
    Solution
    slope of first curve at $$(-3,4)$$
    $$m_1 = dy/dx = \dfrac{-x}{y} = \dfrac{3}{4}$$

    slope of second curve at $$(-3,4)$$
    $$m_2 = \dfrac{-2x+2}{2y+3} = \dfrac{8}{11}$$

    angle between them $$= tan^{-1} \dfrac{m_1 - m_2}{1+m_1 +m_2}$$
    $$=tan^{-1} \dfrac{1/44}{17/11} =tan^{-1} \dfrac{1}{68}$$
  • Question 4
    1 / -0
    If the tangent at each point of the curve $$y=\cfrac { 2 }{ 3 } { x }^{ 3 }-2a{ x }^{ 2 }+2x+5$$ makes an acute angle with positive direction of X-axis then
    Solution
    On differentiating, We get 
    $$\dfrac{dy}{dx}=2x^2-4ax+2$$
    If Tangent makes acute angle with +ve x axis, then 
    $$\dfrac{dy}{dx}\ge0$$ For all x
    $$x^2-2ax+1\ge0\\ \Rightarrow 4a^2-4\le0\Rightarrow a^2\le1\\ -1\le a\le1$$
  • Question 5
    1 / -0
    The equation of the tangent to the curve $$y=\sqrt { 9-2{ x }^{ 2 } } $$ as the point where the ordinate and the abscissa are equal , is 
    Solution
    Given that $${ x }_{ 1 }={ y }_{ 1 }$$
    Therefore, $${ x }_{ 1 }=\sqrt { 9-2{ x }_{ 1 }^{ 2 } } $$
    $$\Rightarrow { x }_{ 1 }^{ 2 }=9-2{ x }_{ 1 }^{ 2 }\quad $$
    $$\Rightarrow { x }_{ 1 }=\pm \sqrt { 3 } $$
    since, $${ y }_{ 1 }>0$$, therefore the point is $$\left( \sqrt { 3 } ,\sqrt { 3 }  \right) $$
    Also, $$y=\sqrt { 9-2{ x }^{ 2 } } $$
    $$\Rightarrow { y }^{ 2 }=9-2{ x }^{ 2 }$$
    On differentiating w.r.t $$x$$, we get
    $$2y\cfrac { dy }{ dx } =-4x\quad $$
    $$\Rightarrow \cfrac { dy }{ dx } =-\cfrac { 2x }{ y } $$
    $$\Rightarrow { \left( \cfrac { dy }{ dx }  \right)  }_{ \left( \sqrt { 3 } ,\sqrt { 3 }  \right)  }=-2$$
    So, the required equation of tangent is
    $$\left( y-\sqrt { 3 }  \right) =-2\left( x-\sqrt { 3 }  \right) $$
    $$\Rightarrow 2x+y-3\sqrt { 3 } =0\quad $$
  • Question 6
    1 / -0
    The equation of the curve satisfying the differential equation $$y_{2}(x^{2} + 1) = 2xy_{1}$$ passing through the point $$(0, 1)$$ and having slope of tangent at $$x = 0$$ as $$3$$ is
    Solution
    Given $$\cfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } \left( { x }^{ 2 }+1 \right) =2x\cfrac { dy }{ dx } $$
    $$y={ x }^{ 2 }+3x+1$$
    Slope, $${ \left( \cfrac { dy }{ dx }  \right)  }_{ x=0 }={ (2x+3) }_{ x=0 }\Rightarrow 2\times 0+3\Rightarrow 3$$
    At point $$x=0$$
    $$y={ (0) }^{ 2 }+3\times 0+1$$
    Thus this curve passes through point $$(0,1)$$ and have slope of tangent at $$x=0$$ as $$3$$
    $$y={ x }^{ 2 }+3x+1$$ is the answer
  • Question 7
    1 / -0
    The slope of the tangent at each point of the curve is equal to the sum of the coordinate of the point. Then, the curve that passes through the origin is
    Solution
    Given, $$\dfrac {dy}{dx}=x+y\Rightarrow dy=xdx+ydx\Rightarrow dy+dx=xdx+ydx+dx$$

    So, $$d(x+y)=(x+y+1)dx\Rightarrow dx=\dfrac {d(x+y+1)}{x+y+1}$$
    Integrating on both sides,
    $$x=\ln(x+y+1)$$
    On taking antilog,
    $$e^x=x+y+1$$
    Or. $$e^x-1=x+y$$
    So, Option A is correct answer.
  • Question 8
    1 / -0
    The equation of tangent to the curve $${ \left( \cfrac { x }{ a }  \right)  }^{ n }+{ \left( \cfrac { y }{ b }  \right)  }^{ n }=2\quad $$ at the point $$(a,b)$$ is
    Solution
    Given equation of the curve, $$\left( \dfrac{x}{a} \right) ^n + \left( \dfrac{y}{b} \right) ^n =2$$

    Differente the above equation to find the slope of the curve

    $$ n{ \left( \dfrac { x }{ a }  \right)  }^{ n-1 }.\dfrac { 1 }{ a } +n{ \left( \dfrac { y }{ b }  \right)  }^{ n-1 }.\dfrac { 1 }{ b } \dfrac { dy }{ dx } =0$$

    $$ \implies \dfrac { dy }{ dx } =\dfrac { -b }{ a } { \left( \dfrac { x }{ a }  \right)  }^{ n-1 }{ \left( \dfrac { b }{ y }  \right)  }^{ n-1 }$$

    $$ \therefore \,\,$$Slope at $$(a,b) = \dfrac { -b }{ a } { \left( \dfrac { a }{ a }  \right)  }^{ n-1 }{ \left( \dfrac { b }{ b }  \right)  }^{ n-1 } = \dfrac{-b}{a}$$

    $$\therefore \,\,$$Equation of the tangent at $$(a,b)$$ is: 

    $$ (y-b) = \dfrac{-b}{a}(x-a) $$

    $$ bx +ay = 2ab$$

    $$ \dfrac{x}{a}+\dfrac{y}{b} = 2$$
  • Question 9
    1 / -0
    The slope of the tangent at the point $$(h, h)$$ of the circle $$x^{2} + y^{2} = a^{2}$$ is :
    Solution
    Slope of the tangent for the cicle $$x^{2}+y^{2}=a^{2}$$ can be calculated by differentiating the circle's equation.
    On differentiating w.r.t x, $$2x + 2y\dfrac{dy}{dx}=0$$
    Slope $$m$$$$=\space \dfrac{dy}{dx}=-\dfrac{x}{y}$$
    Point given is $$(h,h)$$
    Putting point in the slope equation $$m=\dfrac{dy}{dx}=-\dfrac{h}{h}$$
    Slope $$m=-1$$
    Hence, $$(C)$$
  • Question 10
    1 / -0
    The angle at which the curve $$y={ x }^{ 2 }$$ and the curve $$x=\cfrac { 5 }{ 3 } \cos { t } ,y=\cfrac { 5 }{ 4 } \sin { t } $$ intersect is
    Solution
    Given
    $$y={ x }^{ 2 }...(i)$$
    $$\quad x=\cfrac { 5 }{ 3 } \cos { t } ;y=\cfrac { 5 }{ 4 } \sin { t } ...(ii)$$
    Which is parametric equation, we change this equation is caresian equation as follows
    $$\cos { t } =\cfrac { 3 }{ 5 } x;\sin { t } =\cfrac { 4 }{ 5 } y$$
    On Squaring and adding both i.e., $$\cos{t}$$ and $$\sin {t}$$ we get
    $$\cfrac { 9 }{ 25 } { x }^{ 2 }+\cfrac { 16 }{ 25 } { y }^{ 2 }=\cos ^{ 2 }{ t } +\sin ^{ 2 }{ t } $$
    $$\Rightarrow 9{ x }^{ 2 }+16{ y }^{ 2 }=25....(iii)\quad \quad \left[ \because \cos ^{ 2 }{ \theta  } +\sin ^{ 2 }{ \theta  } =1 \right] $$
    $$\therefore$$ The intersection points at Eq.(i) and (iii) are $$(1,1)$$ and $$(-1,1)$$
    Now, slope of tangent of Eq.(i) at point $$(1,1)$$ is
    $${ m }_{ 1 }=\cfrac { dy }{ dx } =2x\quad \therefore { m }_{ 1 }={ \left| \cfrac { dy }{ dx }  \right|  }_{ (1,1) }=2$$
    And slope of tangent of Eq. (iii) at point $$(1,1)$$ is
    $${ m }_{ 2 }=\cfrac { dy }{ dx } =-\cfrac { 9 }{ 16 } $$
    $$\therefore$$ Angle at point of intersection of Eqs. (i) and (iii) we get
    $${ \theta  }_{ 1 }=\tan ^{ -1 }{ \left| \cfrac { { m }_{ 1 }-{ m }_{ 2 } }{ 1+{ m }_{ 1 }{ m }_{ 2 } }  \right|  } =\tan ^{ -1 }{ \cfrac { 41 }{ 2 }  } $$
    similarly, slope of tangent of Eq. (i) at point $$(-1,1)$$
    $${ m }_{ 1 }={ \left| \cfrac { dy }{ dx }  \right|  }_{ (-1,1) }=-2$$
    And slope of tangent of Eq. (iii) at point $$(-1,1)$$
    $${ m }_{ 2 }=\cfrac { dy }{ dx } =\cfrac { 9 }{ 16 } $$
    $$\therefore$$ Angle at point of intersection of Eqs. (i) and (iii) we get
    $${ \theta  }_{ 2 }=\tan ^{ -1 }{ \left| \cfrac {-2- \cfrac { 9 }{ 16 }  }{ 1-\cfrac { 18 }{ 16 }  }  \right|  } =\tan ^{ -1 }{ \cfrac { 41 }{ 2 }  } \quad \quad $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now