Self Studies

Tangents and its Equations Test 32

Result Self Studies

Tangents and its Equations Test 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Equation of normal drawn to the graph of the function defined as $$f(x)=\dfrac{\sin\,x^2}{x},x \neq0 $$ and $$f(0)=0$$ at the origin is 
    Solution
    Let the equation of line is $$y=mx$$
    $$f(x)=\dfrac{\sin x^2}{x}$$
    Let $$g(x)=\sin x^2$$
    For $$\left | x \right |< \delta $$:
    $$g(x)=\displaystyle \sin x^2=x^2-\dfrac{(x^2)^3}{3!}+\dfrac{(x^2)^5}{5!}-...=\sum_{0}^{\infty }(-1)^n\dfrac{(x^2)^{(2n+1)}}{(2n+1)!} $$
    $$f(x)=\dfrac{x^2-\dfrac{(x^2)^3}{3!}+\dfrac{(x^2)^5}{5!}-...}{x}$$
    $$f(x)=x-\dfrac{x^5}{3!}+\dfrac{x^9}{5!}...$$
    $$\dfrac{df(x)}{dx}=1-\dfrac{5x^4}{3!}+\dfrac{9x^8}{5!}...$$
    $$m_1=1-\dfrac{5x^4}{3!}+\dfrac{9x^8}{5!}...$$                         $$(m_1:$$ slope of tangent line at $$x=0)$$
    $$m_1=1$$                      
    $$m=\dfrac{-1}{m_1}$$

    $$\therefore m=-1$$

    Equation of normal is:
                           $$y+x=0$$

    Hence, Option A is correct.
  • Question 2
    1 / -0
    The slope of the tangent to the curve $$y=\int _{ 0 }^{ x }{ \frac { dt }{ 1+{ t }^{ 3 } }  } $$ at the point where $$x=1$$ is
    Solution
    $$\frac { dy }{ dx } =\frac { 1 }{ 1+{ x }^{ 3 } } $$
    $$m=\left( \frac { dy }{ dx }  \right) x=1=\frac { 1 }{ 1+1 } =\frac { 1 }{ 2 } $$
  • Question 3
    1 / -0
    A tangent PT is drawn to the circle $$x^2+y^2=4$$ at the point $$P(\sqrt{3}, 1)$$. A straight line L, perpendicular to PT is a tangent to the circle $$(x-3)^2+y^2=1$$. $$(1)$$ A possible equation of L is?
    Solution
    Slope of tangent to $$x^{2}+y^{2}=4$$ at $$P(\sqrt{3},1)$$ is given by differentiating given equation w.r.t. x
    $$\dfrac{dy}{dx}=\dfrac{-x}{y}=-\sqrt{3}$$
    So slope of line L $$=\dfrac{-1}{-\sqrt{3}}=\dfrac{1}{\sqrt{3}}$$
    Let equation of L be $$x-\sqrt3y+c=0$$
    As L is tangent to $$(x-3)^{2}+y^{2}=1$$
    So perpendicular distance of L from its center should be equal to its radius i.e. $$1$$.
    Centre $$(3,0)$$
    $$\dfrac{|3+c|}{\sqrt4}=1$$
    $$\Rightarrow c=-1 or -5$$
    So equation of L is $$x-\sqrt3y=1$$
    or
     $$x-\sqrt3y=5$$
    Hence option A is correct.
  • Question 4
    1 / -0
    The points of the curve $$y={ x }^{ 3 }+x-2$$ at which its tangent are parallel to the straight line $$y=4x-1$$ are
    Solution
    Given
    $$y={ x }^{ 3 }+x-2...(i)$$

    $$y=4x-1....(ii)$$

    Slope of tangent to the curve (i)

    $$\cfrac { dy }{ dx } =3{ x }^{ 2 }+1$$

    slope of tangent at point $$\left( \alpha ,\beta  \right) $$ is

    $$\quad { \left| \cfrac { dy }{ dx }  \right|  }_{ \left( \alpha ,\beta  \right)  }^{  }=3{ \alpha  }^{ 2 }+1...(iii)$$

    Given, tangent of curve (i) is parallel to line (ii)

    $$\therefore$$ Slope of line (ii) is $$4$$

    $$\therefore$$ From Eq(iii) we get

    $$3{ \alpha  }^{ 2 }+1=4\Rightarrow \alpha =\pm 1$$

    $$\therefore \left( \alpha ,\beta  \right) $$ lie on curve (i)

    $$\beta ={ \left( \pm 1 \right)  }^{ 2 }+\left( \pm 1 \right) -2\Rightarrow \beta =0,-4\quad $$

    $$\therefore$$ Points are $$(1,0)$$ and $$(-1,-4)$$
  • Question 5
    1 / -0
    The equation of the other normal to the parabola $${y}^{2}=4ax$$ which passes through the intersection of those at $$(4a,-4a)$$ and $$(9a,-6a)$$ is:
    Solution
    There is a slight misprint and the equation of the parabola should be  $${ y }^{ 2 }=4ax$$.
    Any point on the parabola is of the form P ($$at^2$$,$$2at$$).
    Now, differentiating the equation of the parabola,
    $$\quad { 2y\dfrac { dy }{ dx }  }=4a\\ \Rightarrow \frac { dy }{ dx } =\frac { 2a }{ y }$$
    So, Slope of the Normal$$=\dfrac { -y }{ 2a } =\dfrac { -2at }{ 2a } =-t$$

    Hence, Equation of Normal at P ($$at^2$$,$$2at$$) is:
        $$y-2at=-t\left( x-a{ t }^{ 2 } \right)$$
    $$\Rightarrow a{ t }^{ 3 }+2at-xt-y=0$$                                                                        ...(1)
    In this cubic equation, sum of roots =0
    Hence, we can say $${ t }_{ 1 }+{ t }_{ 2 }+{ t }_{ 3 }=0$$
    Now, at point 1 ($$4a$$,$$-4a$$),
        $$-4a=2a{ t }_{ 1 }$$
       $$\Rightarrow { t }_{ 1 }=-2$$
    Similarly, at point 2 ($$9a$$,$$-6a$$),
        $$2a{ t }_{ 2 }=-6a$$
       $$\Rightarrow { t }_{ 2 }=-3$$

    Now as $${ t }_{ 1 }+{ t }_{ 2 }+{ t }_{ 3 }=0$$,
    we get, $${ t }_{ 3 }=5$$
    Putting $${ t }_{ 3 }=5$$,
    From the equation of normal in (1) above, we get
          $$a\left( 125 \right) +5\left( -x+2a \right) -y=0$$
    $$\Rightarrow 135a=5x+y$$
    or,  $$5x+y-135a=0$$       ....(B)

  • Question 6
    1 / -0
    Let $$f\left( x \right) =\begin{cases} -{ x }^{ 2 }\ \ \ \ \ , x<0 \\ { x }^{ 2 }+8,x\ge 0 \end{cases}$$ Equation of tangent line touching both branches of $$y=f\left( x \right)$$ is
  • Question 7
    1 / -0
    The area of the triangle formed by the positive x-axis, the tangent and normal to the curve $${ x }^{ 2 }+{ y }^{ 2 }=16{ a }^{ 2 }$$ at the point $$\left( 2\sqrt { 2 } a,2\sqrt { 2 } a \right) $$ is
    Solution
    Point on the curve is $$(2\sqrt{2}a,2\sqrt{2}a)$$

    Equation of tangent at this point is $$x_1x+y_1y=16a^2$$

    here $$x_1 = 2\sqrt{2}a$$   and   $$y_1=2\sqrt{2}a$$

    $$Area = \dfrac{1}{2} \times{base}\times{height}$$

    Point of intersection of tangent to the x axis is $$\dfrac{16a^2}{2\sqrt{2}a}$$
    So,
    Base = $$4\sqrt{2}a$$

    Height =$$2\sqrt{2}a $$

    $$Area = \dfrac{1}{2}\times{4\sqrt{2}a}\times{2\sqrt{2}a}$$

    $$Area = 8a^2$$
  • Question 8
    1 / -0
    A point P moves such that sum of the slopes of the normal drawn from it to the hyperbola $$xy=16$$ is equal to the sum of the ordinates of the feet of the normal. Let 'P' lies on the curve C, then.
    The equation of 'C' is?
    Solution
    Let P(h,k) be the point in the plane of hyperbola $$xy=16=4^2$$

    The equation of the normal at a point $$(4t, \dfrac {4} {t})$$ to the hyperbola $$xy=4^2$$ is

    $$xt^3-yt-4t^4+4=0$$

    if if passes through $$P(h,k)$$ then,

    $$ht^3-yt-4t^4+4=0$$

    $$ \Rightarrow 4t^4-ht^3+kt-4=0$$

    this is a fourth degree equation  in  t. So, it gives 4 values of t, $$t_1,t_2,t_3,t_4$$ corresponding to each value of t there is a point on hyperbola such that the normal passes through $$P(h,k)$$.

    let the 4 points be $$ A(ct_1, \dfrac{c}{t_1}) $$,$$ B(ct_2, \dfrac{c}{t_2}) $$,$$ C(ct_3, \dfrac{c}{t_3}) $$   and  $$ D(ct_4, \dfrac{c}{t_4}) $$

    such that normal at these points pass through $$P(h,k)$$.

    Since $$t_1,t_2,t_3,t_4$$ are roots of equation (1).

    Therefore,
    $$t_1+t_2+t_3+t_4 = \dfrac{h}{c}=\dfrac{h}{4}$$.......(2)

    $$ \sum t_1t_2 =0 $$.......(3)

    $$ \sum t_1t_2t_3 = - \dfrac{k}{4} $$.........(4)

    $$  t_1t_2t_3t_4 =-1 $$.......(5)

    It s given that the sum of the slopes of the normals at A,B,C and D is equal to the sum of the coordinates of these points.

    Therefore
    $$t_1^2+t_2^2+t_3^2+t_4^2 = \dfrac{c}{t_1}+\dfrac{c}{t_3}+\dfrac{c}{t_3}+\dfrac{c}{t_4}=\dfrac{4}{t_1}+\dfrac{4}{t_2}+\dfrac{4}{t_3}+\dfrac{4}{t_4}$$

    $$(t_1+t_2+t_3+t_4 )^2-2\sum t_1t_2=4\left ( \dfrac {\sum t_1t_2t_3}{t_1t_2t_3t_4} \right )$$

    $$\Rightarrow \dfrac{h^2}{4}-2\times 0 = 4 \times \left ( \dfrac{\dfrac {-k}{4}} {-1} \right ) $$

    $$\Rightarrow \dfrac{h^2}{4} = k $$

    $$\Rightarrow h^2 = 16k$$

    so the locus of $$(h,k)$$ is $$x^2=16y$$, which is a parabola
  • Question 9
    1 / -0
    The equation of normal $${ x }^{ 2/3 }+{ y }^{ 2/3 }={ a }^{ 2/3 }$$ at $$\left( \cfrac { a }{ 2\sqrt { 2 }  } ,\cfrac { a }{ 2\sqrt { 2 }  }  \right) $$ is ______ .
    Solution
    To get the slope of $${ x }^{ \cfrac { 2 }{ 3 }  }+{ y }^{ \cfrac { 2 }{ 3 }  }={ a }^{ \cfrac { 2 }{ 3 }  }$$
    We differentiate w.r.to $$x$$
    $$\quad \therefore \cfrac { 2 }{ 3 } { x }^{ -\cfrac { 1 }{ 3 }  }+\cfrac { 2 }{ 3 } { y }^{ -\cfrac { 1 }{ 3 }  }\cfrac { dy }{ dx } =0$$
    $$\therefore \cfrac { dy }{ dx } =-\left( \cfrac { { x }^{ -\cfrac { 1 }{ 3 }  } }{ { y }^{ \cfrac { 2 }{ 3 }  } }  \right) $$
    $$\therefore \cfrac { dy }{ dx } =-{ \left( \cfrac { y }{ x }  \right)  }^{ \cfrac { 1 }{ 3 }  }$$
    $$\therefore$$ Slope of tangent at point
    $$P\left( \cfrac { a }{ 2\sqrt { 2 }  } ,\cfrac { a }{ 2\sqrt { 2 }  }  \right) $$
    $$\therefore$$ Slope $$\quad m={ \left( \cfrac { dy }{ dx }  \right)  }_{ \cfrac { a }{ 2\sqrt { 2 }  } ,\cfrac { a }{ 2\sqrt { 2 }  }  }\quad $$
    $$\quad \therefore m={ \left( \cfrac { dy }{ dx }  \right)  }_{ \cfrac { a }{ 2\sqrt { 2 }  } ,\cfrac { a }{ 2\sqrt { 2 }  }  }-{ \left( \cfrac { \cfrac { a }{ 2\sqrt { 2 }  }  }{ \cfrac { a }{ 2\sqrt { 2 }  }  }  \right)  }^{ \cfrac { 1 }{ 3 }  }\quad $$
    $$=-{ (1) }^{ \cfrac { 1 }{ 3 }  }=-1$$
    Hence slope of tangent $$m=-1$$
    $$\therefore$$ Slope of normal $$=1$$
    $$\therefore$$ we get equation of normal using equation $$y-{ y }_{ 1 }=m(x-{ x }_{ 1 })\quad $$
    $$\therefore y-\cfrac { a }{ 2\sqrt { 2 }  } =(1)\left( x-\cfrac { a }{ 2\sqrt { 2 }  }  \right) $$
    $$\therefore y-\cfrac { a }{ 2\sqrt { 2 }  } =x-\cfrac { a }{ 2\sqrt { 2 }  } $$
    $$\therefore$$ $$y=x$$
  • Question 10
    1 / -0
    The tangent to $$\left( a{ t }^{ 2 },2at \right) $$ is perpendicular to X-axis at _____ point $$t\in R$$.
    Solution
    Here $$\left( x,y \right) =\left( a{ t }^{ 2 },2at \right) $$
    $$\therefore x=a{ t }^{ 2 };y=2at$$
    $$\therefore \cfrac { dx }{ dt } =2at;\cfrac { dy }{ dt } =2a$$
    $$\therefore \cfrac { dy }{ dx } \cfrac { dy/dt }{ dx/dt } =\cfrac { 2a }{ 2at } =\cfrac { 1 }{ t } $$
    Since, tangent is perpendicular to X-axis slope is undefined
    $$\therefore$$ $$t=0$$
    $$\therefore t=0$$
    $$\therefore \left( a{ t }^{ 2 },2at \right) =\left( 0,0 \right) $$
    Thus, tangent is perpendicular to X-axis at $$(0,0)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now