Self Studies

Tangents and its Equations Test 33

Result Self Studies

Tangents and its Equations Test 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Line $$y=x$$ and curve $$y=x^2+bx+c$$ touches at $$(1, 1)$$ then __________.
    Solution
    Given line $$l : y =x$$
    $$l : x-y=0$$
    $$\therefore$$ slope of line $$l=1$$
    Now $$y=x^2+bx+c$$
    $$\therefore \dfrac{dy}{dx}=2x+b$$
    $$\therefore \left(\dfrac{dy}{dx}\right)_{P(1, 1,)}=2(1)+b$$
    $$=2+b$$
    But slope of tangent of the curve $$=1$$.
    $$\therefore 2+b=1$$
    $$\therefore b=-1$$
    Now $$(1, 1)\in y=x^2+bx+c$$
    $$\therefore 1=1+b(1)+c$$
    $$\therefore b+c=0$$
    $$\therefore c=-b$$
    $$c=-(-1)$$
    $$\therefore c=1$$
    $$\therefore$$ We have $$b=-1$$ and $$c=1$$.
  • Question 2
    1 / -0
    Equation of the normal of curve $$y=x^3-2x+4$$ at point $$(1, 3)$$ is __________.
    Solution
    $$y=x^3-2x+4$$
    $$\therefore \dfrac{dy}{dx}=3x^2-2$$
    $$\therefore \left(\dfrac{dy}{dx}\right)_{(1.3)}=3(1)-2=3-2=1$$
    $$\therefore$$ slope of tangent $$=1$$
    $$\therefore$$ slope of normal $$=-1$$
    $$\therefore$$ We get equation of Normal using
    $$u-y_1=m(x-x_1)$$
    $$\therefore y-3=-1(x-1)$$
    $$\therefore y-3=-x+1$$
    $$\therefore x+y-3-1=0$$
    $$\therefore$$ Required equation of Normal is $$x+y-4=0$$
  • Question 3
    1 / -0
    The equation to the tangent to $${\left( {{\dfrac xa}} \right)^n} + {\left( {{\dfrac yb}} \right)^n} = 2$$ at $$\left( {a,b} \right)$$


    Solution
    $${ (\dfrac { x }{ a } ) }^{ n }+{ (\dfrac { y }{ b } ) }^{ n }\\ n{ (\dfrac { x }{ a } ) }^{ n-1 }+n{ (\dfrac { y }{ b } ) }^{ n-1 }\dfrac { dy }{ dx } =0$$
    At point $$(a,b)$$
    $$x=a\ ,\ y=b$$
    $$n+n\dfrac { dy }{ dx } =0\\ \dfrac { dy }{ dx } =-1=m\\ y=mx+c\\ y=-x+c$$
    at$$(a,b)$$
    $$b=-a+c$$
    $$c=b+a$$
    $$y+x=b+a$$

  • Question 4
    1 / -0
    Find the equations of the tangent and the normal to the curve $$x^2 +y^2=5$$ where the tangent is parallel to the lines $$x-y =0$$ respectively.
    Solution
    Let the tangent equation be $$x-y=c$$

    Substituting above in circle equation ;

    $$\Rightarrow (c+y) ^{2}+y^{2}=5$$

    $$\Rightarrow 2y^{2}+2cy+c^{2}-5=0$$

    As tangent intersects at only single point, above equation should have equal roots 

    $$\Rightarrow$$ Discriminant $$=0$$

    $$\Rightarrow 4c^{2}=4×2×(c^{2}-5)$$

    $$\Rightarrow c=\pm \sqrt {10}$$

    $$\therefore $$ Equation of tangent is : $$x-y=\pm \sqrt {10}$$

    As normal is perpendicular to tangent, let the equation of normal be $$x+y=k$$

    And normal passes through the center of circle $$(0,0)$$

    $$\Rightarrow 0+0=k$$

    $$\Rightarrow k=0$$

    $$\therefore$$ Equation of normal is $$x+y=0$$
  • Question 5
    1 / -0
    The point on the curve $$y^{2}=x$$ where tangent makes $$45^{o}$$ angle with $$x-$$axis ?
    Solution
    $$ \dfrac{dy}{dx} = $$ Slope of the tangent at that point of the curve.

    Given curve is $$ x = y^2 $$
    Keep $$ y = a, \, then \,  x = y^2 $$ 
    point $$ (a^2, a) $$

    $$ \displaystyle \dfrac{dy}{dx} (y^2 - x) = 0 \dfrac{dy}{dx} = \dfrac{1}{2y} = \dfrac{1}{2a} = \tan(45^0) $$

    $$ \Rightarrow a= \dfrac{1}{2} \quad a^2= \dfrac{1}{4} $$

    point $$ \left(\dfrac{1}{4}, \dfrac{1}{2}\right) $$
  • Question 6
    1 / -0
    Equation of the normal to the curve $$y = -\sqrt{x} + 2$$ at the point of its interaction with the curve $$y = x$$ is
    Solution
    Equation of normal to the curve
    $$y=-\sqrt{x}+2$$ at the point of intersection with $$y=x$$.
    Point of intersection of
    $$y=-\sqrt{x}+2$$, $$y=x$$
    $$x=-\sqrt{x}+1$$
    $$x-2=-\sqrt{x}$$
    $$x^2-4x+4=x$$
    $$x^2-5x+4=0$$
    $$(x-4)(x-1)=0$$
    $$x=4, 1$$
    If $$x=4$$, $$(4, 4)$$ does not
    Satisfy $$y=-\sqrt{x}+2$$
    So, intersection point is $$(1, 1)$$
    Normal at $$(1, 1)$$ to $$y=-\sqrt{x}+2$$
    $$\dfrac{dy}{dx}=\dfrac{-1}{2\sqrt{x}}$$
    $$\dfrac{dy}{dx}|_{(1, 1)}=\dfrac{-1}{2}$$
    Slope of normal $$=\dfrac{(-1)}{\left(\dfrac{-1}{2}\right)}=2$$ and passes through $$(1, 1)$$
    Equation of normal: $$2x-y=1$$.
  • Question 7
    1 / -0
    The perpendicular distance from origin to the normal at any point to the curve $$x = a\left( {\cos \theta  + \theta \sin \theta } \right)$$. $$y = a\left( {\sin \theta  - \theta \cos \theta } \right)$$
    Solution
    $$\dfrac{dy}{dx} = \dfrac{dy}{d\theta}  \dfrac{d\theta}{dx}  = tan \theta = \space slope\space of\space tangent$$

    Slope of the normal $$=-\cot \space \theta$$ $$=\tan(90+\theta)$$

    $$[y-a(\sin\theta - \theta \cos \theta)] = \dfrac{-\cos\theta}{\sin\theta} (x-a(\cos\theta+a \sin\theta))$$

    $$x \cos\theta +y \sin\theta = a(1)$$

    Now distance from $$(0,0)$$

    $$d=\dfrac{(0+0-a)}{1} =a$$

  • Question 8
    1 / -0
    The slope of the tangent and normal to $$y={ x }^{ 2 }-3x+5$$ at $$(2,3)$$ are ______ and _____ respectively.
    Solution
    the slope of the tangent at any point is the derivative of the equation at that point

    therefore

    $$\frac { d }{ dx } ({ x }^{ 2 }-3x+5)=2x-3$$

    at$$(2,3)$$ $$\dfrac{dy}{dx}$$ is $$2(2)-3=1$$

    therefore the slope of the tangent is $$1$$

    normal is perpendicular to the tangent

    therefore the slope of the normal*slope of the tangent=$$-1$$

    therefore the slope of the normal is $$-1$$

  • Question 9
    1 / -0
    Find the angle between tangent of the curve $$y = (x + 1) (x - 3)$$ at the point where it cuts the axis of $$x$$.
    Solution
    The curve $$y=(x+1)(x-3)=x^2-2x-3$$.........(1) cuts the axis of $$x$$ at $$(-1,0)$$ and $$(3.0)$$. These points are obtained by putting $$y=0$$ in the equation (1).
    Now the slope of the tangent to the curve (1) at $$(-1,0)$$ be $$(m_1)=\left.\dfrac{dy}{dx}\right|_{(-1,0)}=[2x-2]_{(-1,0)}=-4$$.
    Again the slope of the tangent to the curve (1) at $$(-1,0)$$ be $$(m_2)=\left.\dfrac{dy}{dx}\right|_{(3,0)}=[2x-2]_{(3,0)}=4$$.
    Now the angle between the tangents to (1) at those points be 
    $$\tan^{-1}\left(\dfrac{m_1-m_2}{1+m_1.m_2}\right)$$

    $$=\tan^{-1}\left(\dfrac{8}{15}\right)$$.
    So the required angle be $$\tan^{-1}\left(\dfrac{8}{15}\right)$$.
  • Question 10
    1 / -0
    If the tangent at the P of the curve $${y^2} = {x^3}$$ intersect the curve again at Q and the straight lines OP, OQ make angles $$\alpha ,\beta $$ with the x-axis, where O is the origin. then, $${{\tan \alpha } / {\tan \beta }}$$ has the value equal to 
    Solution
    Let the parametric coordinates at $$P$$ and $$Q$$ be :
    $$(t_1^2, t_1^3), (t_2^2, t_2^3)$$
    Then slope of the tangent at the point $$P\Rightarrow \dfrac{dy}{dx}=\dfrac{3x^2}{2y}=\dfrac{3}{2t_1}$$
    Also, line joining $$P$$ and $$Q$$ would have a slope given by: $$\dfrac{t_2^3-t_1^3}{t_2^2-t_1^2}$$.
    Equating both slopes, $$2\dfrac{t_2^2}{t_1^2}=\dfrac{t_2}{t_1}+1$$------(1)
    Also. $$\tan \alpha=t_1, \tan \beta=t_2$$-------(2)
    $$\therefore$$ From (1),
    $$2\dfrac{\tan^2\beta}{\tan^2\alpha}=\dfrac {\tan \beta}{\tan \alpha}+1$$.
    Let $$\dfrac{t_2}{t_1}=x$$
    $$\therefore 2x^2=x+1$$
    or, $$2x^2-x-1=0$$
    or, $$2x^2-2x+x-1=0$$
    or, $$2x(x-1)+1(x-1)=0\Rightarrow (x-1)(2x+1)=0$$
    $$\therefore \boxed{x=1, 1/2}$$
    i.e $$\dfrac{t_2}{t_1}=1\Rightarrow \boxed{t_2=t_1}$$ or, $$\dfrac{t_2}{t_1}=\dfrac{-1}{2}\Rightarrow \boxed{t_1=-2t_2}$$
    $$\therefore$$ From (2) if $$t_2=t_1$$;    and if $$t_1=2t_2$$
    $$\tan \alpha=\tan \beta$$                        $$\tan \alpha=-2\tan \beta$$
    $$\therefore \boxed{\dfrac{\tan \alpha}{\tan \beta}=1}$$                    $$\therefore \boxed{\dfrac{\tan \alpha}{\tan \beta}=-2}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now