Self Studies

Tangents and its Equations Test 34

Result Self Studies

Tangents and its Equations Test 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the curves $$y^2 = 4ax$$ and $$xy = c^2$$ cut orthogonally then $$\dfrac{c^4}{a^4} =$$
    Solution
    $$y^2=4ax, xy=c^2$$ cut orthogonally
    Let they intersect at $$(x_1, y_1)$$
    $$y^2=4ax$$
    $$2y\dfrac{dy}{dx}=4a$$
    $$\dfrac{dy}{dx}=\dfrac{2a}{y}$$
    $$\dfrac{dy}{dx}|_{(x_1, y_1)}=\dfrac{2a}{y_1}$$ …..$$(1)$$
    $$xy=c^2$$
    $$y+x\dfrac{dy}{dx}=0$$
    $$\dfrac{dy}{dx}|_{(x_1, y_1)}=\dfrac{-y_1}{x_1}$$ ……$$(2)$$
    From $$(1), (2)$$ $$(\because m_1m_2=-1)$$
    $$\dfrac{2a}{\not{y_1}}\times \dfrac{\not{-}\not{y_1}}{x_1}=\not{-}1$$
    $$x_1=2a$$
    From $$y^2=4ax$$
    $$y_1=\sqrt{8a^2}=2\sqrt{2}a$$
    $$xy=c^2$$
    $$x_1y_1=c^2$$
    $$2a(2\sqrt{2}a)=c^2$$
    $$\dfrac{c^2}{a^2}=4\sqrt{2}$$
    $$\dfrac{c^4}{a^4}=32$$.
  • Question 2
    1 / -0
    The equation of the tangent to the curve $$y = b{e^{ -\dfrac{x}{a}}}$$ at a point , where $$x=0$$ is 
    Solution
    $$y=b{ e }^{ \cfrac { -x }{ a }  }$$ when $$x=0\, y=b$$
    $$\dfrac { dy }{ dx } =\cfrac { -b }{ a } { e }^{ \cfrac { -x }{ a }  }$$ at $$x=0$$,   
    $$\dfrac { dy }{ dx } =\cfrac { -b }{ a } $$
    $$y=\cfrac { -bx }{ a } +c$$
    $$y=\cfrac { -bx }{ a } +b\\ \cfrac { y }{ b } =\cfrac { -x }{ a } +1\\ \cfrac { x }{ a } +\cfrac { y }{ b } =1$$
  • Question 3
    1 / -0
    The equation of the normal to the curve $$y=x+\sin x \cos x$$ at $$x=\pi/2$$ is
    Solution
    $$y=x+\sin x\cos x = x+\dfrac{\sin(2x)}{2}$$
    $$y'=1+\cos(2x)$$
    Substituting $$x=\pi/2$$
    $$y'(\pi/2) = 1+\cos(\pi)=0$$

    Therefore, slope of tangent is 0. This means that the normal is a vertical line of the $$x=c$$. Since the point has x-coordinate $$\pi/2$$, the equation of the line is:
    $$x=\pi/2\implies\boxed{2x=\pi}$$
  • Question 4
    1 / -0
    The equation of the normal to the curve $$y=\sin x$$ at $$(0,0)$$ is
    Solution

    $$\textbf{Step-1: Finding the slope of normal at the given point}$$
                    $$\text{We know that the slope of Tangent means the derivative of that equation.}$$
                    $$\text{Hence, the slope of the tangent}$$ $$y=sinx$$ $$\text{will be}$$
                    $$\dfrac{dy}{dx}=cosx$$
                    $$\text{Also, we know that product of slopes of tangent and  normal is}$$ $$-1$$
                    $$\text{Hence, slope of the normal is}$$ $$\dfrac{-1}{cosx}$$
                    $$\text{At}$$ $$x=0,$$ $$\text{The slope is}$$ $$-1$$

    $$\textbf{Step-2: Finding the equation of the normal}$$
                    $$\text{Using the general form}$$ $$y-y_1=m(x-x_1)$$ $$\text{we get}$$
                    $$y-0=-1(x-0)$$
                    $$x+y=0$$

    $$\textbf{Hence, equation of the normal is}$$ $$\mathbf{x+y=0}$$
                                  
  • Question 5
    1 / -0
    The equation of the curve passing through $$(1,3)$$ whose slope at any point $$(x,y)$$ on it is  $$\dfrac { y }{ { x }^{ 2 } }$$ is given by
    Solution

    $$\dfrac{{dy}}{{dx}} = \dfrac{y}{{{x^2}}}\,\,\,\,\,\,\,\left( {given} \right)$$

    $$\int {\dfrac{{dy}}{{dx}} = \int {\dfrac{{dx}}{{{x^2}}}} } $$

    $$ \Rightarrow \log y =  - \dfrac{1}{x} + c$$

    $$ \Rightarrow y = {e^{ - \frac{1}{x} + c}}$$

    $$ \Rightarrow y = {e^{ - \frac{1}{x} + c}}$$

    $$ \Rightarrow y = {e^{ - \frac{1}{x}}},c$$

     since this curve is passing through point $$\left( {1,3} \right)$$

    so,    $$3 = {e^{ - \dfrac{1}{t}}}.c$$

             $$ \Rightarrow c = 3e$$

    therefore , eqn of the curve is 

             $$y = {e^{ - \dfrac{1}{x}}}.3e$$

             $$ \Rightarrow y = 3{e^{ - \dfrac{1}{x} + 1}}$$

             $$ \Rightarrow y = 3{e^{1 - \dfrac{1}{x}}}$$

     

  • Question 6
    1 / -0
    An equation of the tangent to the curve $$y=x^{4}$$ from the point $$(2,0)$$ not on the curve is:
    Solution
    let a,b be point on curve (x, y)

    $$ \displaystyle  b = a^4 $$ 

    $$ \displaystyle \frac{dy}{dx} (x^4) = 4x^3 = 4a^3 $$ 

    $$ \displaystyle (y- y_1) = m (x - x_1) \rightarrow$$ be tangent equation passes through (2, 0) 

    $$ \displaystyle (b-0) = 4a^3 (a-2) $$

    $$ \displaystyle a^4 = 4a^3 (a-2) $$

    $$ \displaystyle 3a^4 - 8a^3 = 0 $$

    $$ \displaystyle a^3 (3a - 8) = 0 $$
     
    $$ \displaystyle a= 0 \quad or \quad a= \frac{8}{3} \quad (0,0)$$ & $$\left[\dfrac{8}{3},\left(\dfrac{8}{3} \right)^4\right] $$ points on curve

    $$ \displaystyle b=0 \quad or \quad b= \left(\frac{8}{3}\right)^4 $$

    $$ \displaystyle (y - 0) = \frac{0-0}{2-0} (x-0)\Rightarrow y = 0 \rightarrow $$tangent (1)

    $$ \displaystyle \left[y-\left(\frac{8}{3}\right)^4\right] = \frac{(\frac{8}{3})^4_{-0}}{(\frac{8}{3})_{-2}} \quad (x - \frac{8}{3}) \rightarrow  $$tangent (2) 

  • Question 7
    1 / -0
    Find the points on the ellipse $$\dfrac{{{x^2}}}{4} + \dfrac{{{y^2}}}{9}=1$$ , on which the normals are parallel to the line $$3x-y=1$$.
    Solution

  • Question 8
    1 / -0
    Number of different points on the curve $$y^2=x(x+1)^2$$ where the tangent to the curve drawn at $$(1, 2)$$ meets the curve, is?
    Solution

  • Question 9
    1 / -0
    Find the slope of the normal to the curve $$2x^{2} - xy + 3y^{2} = 18$$ at $$(3,1)$$.
    Solution
     Equation of curve $$2{ x }^{ 2 }-xy+3{ y }^{ 2 }=18$$

    Differentiating above equation w.r.t $$x,$$

    $$4x-y-x\dfrac { dy }{ dx }+6y\dfrac { dy }{ dx } =0$$

    $$4x-y+\dfrac { dy }{ dx } (6y-x)=0$$

    $$\dfrac { dy }{ dx } (6y-x)=y-4x$$

    $$\dfrac { dy }{ dx } =\dfrac { y-4x }{ 6y-x } $$

    $$\dfrac { dy }{ dx| } _{ (3,1) }=\dfrac { 1-4\left( 3 \right)  }{ 6-3 } $$

    $$\dfrac { dy }{ dx| } _{ (3,1) }=\dfrac { -11 }{ 3 } $$

    Slope of normal to the curve 
    $$=\dfrac { -1 }{ \dfrac { dy }{ dx| } _{ (3,1) }  } $$
                                                    
    $$=\dfrac { -1 }{ \dfrac { -11 }{ 3 }  } $$
                                                     
    $$=\dfrac { 3 }{ 11 } $$
                                          
    $$\boxed { \therefore    Ans =\dfrac { 3 }{ 11 }  } $$
  • Question 10
    1 / -0
    Area of the triangle formed by the tangent at $$x=2$$ on the curve $$y= \dfrac{8}{4+x^2}$$ with the coordinate axes is (in sq. units)

    Solution
    $$y=\dfrac {8}{4+x^2}$$

    $$At \,\,x=2\ y=1$$

    $$y' =\dfrac {-8(2x)}{(4+x^2)^2}=\dfrac {-16\times 2}{8^2}=\dfrac {-1}{2}$$

    Tangent is $$y=mx+c$$

    $$y=\dfrac {-1}{2}x+c$$

    passes through $$(2, 1)\ C=2$$

    $$2y+x=4$$
    Base of triangle $$=4$$

    Height of triangle $$=\dfrac {4}{2}=2$$

    Area of $$\Delta =\dfrac {1}{2}\times 4\times 2=4\ sq.unit$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now