Self Studies

Tangents and its Equations Test 36

Result Self Studies

Tangents and its Equations Test 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The curve $$y = ax^3 + bx^2 + cx + 8$$ touches $$x-$$ axis at $$P(-2, 0)$$ and cuts $$y-$$ axis at a point $$Q$$ where its gradient is $$3$$. The values of $$a, b, c$$ are respectively ?
    Solution
    $$y=ax^{3}+bx^{2}+cx+8$$
    $$\Rightarrow 0=-8a+4b+c(-2)+8$$
    $$0=-8a+4b-2c+8 ----(1)$$

    It touches $$y-$$ axis at $$Q\Rightarrow x=0$$

    $$y=8$$

    $$Q.(0,8)$$

    $$\dfrac{dy}{dx}=3ax^{2}+2bx+c$$

    Given gradient is $$3$$ at $$G(0,8)$$

    $$3=c$$
    $$\therefore c=3$$

    $$\because$$ the curve touches $$x-$$ axis 

    $$\therefore$$ slope of the tangent at $$P$$ is $$0$$

    $$\dfrac{dy}{dx}=3ax^{2}+2bx+3$$

    $$0=12a-4b+3$$

    $$12a-4b=-3 ---- (1)$$

    eqn $$(1)$$     $$-8a+4b-6+8=0$$
                     $$-8a+4b=-2 --- (ii)$$

    Adding $$(10$$ & $$(2)$$, we get

    $$12a-4b=-3$$
    $$-8a+4b=-2$$
    ____________
    $$4a=-5$$
    $$a=-5/4$$
    $$b=-3$$
    $$\boxed{\therefore a=-5/4, b=-3, c=3}$$
  • Question 2
    1 / -0
    The equation of the normal to the curve $$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$$ at the point $$(x_1, y_1)$$ on it is?
    Solution
    $$\cfrac{x^2}{a^2} + \cfrac{y^2}{b^2} = 1$$
    $$\cfrac{2x}{a^2} \cfrac{dx}{dy} + \cfrac{2y}{b^2} = 0$$
    $$-\cfrac{dx}{dy} = \cfrac{a^2 y_1}{b^2 x_1}$$
    Line - $$y = mx+c$$
    $$y = \cfrac{a^2 y_1}{b^2 x_1} x +c$$
    Putting $$(x_1,y_1)$$ in the line equation,we get
    $$y_1 = \cfrac{a^2 y_1}{b^2} + c$$
    $$c = y_1(1 - \cfrac{a^2}{b^2})$$ 
    $$\cfrac{y}{y_1} = \cfrac{a^2 x}{b^2} + \cfrac{b^2-a^2}{b^2}$$
    $$\cfrac{a^2 x}{x_1} -\cfrac{b^2 y}{y_1} = a^2 - b^2$$

  • Question 3
    1 / -0
    The curve satisfying D.E $$y dx - (x+3{y}^{2})dy=0$$ and passing through the point $$(1,1)$$ also passes through the point:
    Solution

  • Question 4
    1 / -0
    Area of the triangle formed by the tangent, normal to the curve $$x^{2}/a^{2}+y^{2}/b^{2}=1$$ at the point $$(a/\sqrt{2} , b/\sqrt{2})$$ and the $$x-$$axis is
    Solution

  • Question 5
    1 / -0
    The numbers of tangent to the curve $$y - 2 = {x^5}$$  which are drawn
    from point $$\left( {2,2} \right)$$ is/are 
    Solution
    $$y-2=x^5 +2$$
    $$y=x^5+2$$
    $$y^1=5x^4$$
    $$y^1=5(2)^4$$
    $$y^1=5\times 16=80$$
  • Question 6
    1 / -0
    Equation of a normal to the curve $$y=x\log{x}$$, parallel to $$2x-2y+3=0$$ is
    Solution

  • Question 7
    1 / -0
    If the normal to the curve $$y=f\left( x \right)$$ at $${(3,4)}$$ makes angle $$\dfrac {3\pi}{4}$$ with $$\bar {OX}$$ then $$f^{ 1 }\left( 3 \right)=$$
    Solution
    $$\because y=f\left(x\right)$$
    $${y}^{‘}={f}^{‘}\left(x\right)$$
    Slope of tangent $$={f}^{‘}\left(x\right)$$
    Slope of normal $$=-\dfrac{1}{{f}^{‘}\left(x\right)}$$
    $$\Rightarrow \tan{\dfrac{3\pi}{4}}=-\dfrac{1}{{f}^{‘}\left(3\right)}$$
    $$\Rightarrow -1=-\dfrac{1}{{f}^{‘}\left(3\right)}$$
    $$\Rightarrow \boxed{{f}^{‘}\left(3\right)}=1$$

  • Question 8
    1 / -0
    Equation of a tangent to the curve $$y=\cos(x+y),\ 0\le x\le 2\pi$$ that is parallel to the line $$x+2y=0$$ is
    Solution
    Given curve y=cos (x+y)
    we have find equation of tangent parallel to x+2y=0
    slope of tangent is $$\dfrac{dy}{dx}$$
    $$\dfrac{dy}{dx}=\dfrac{d}{dx} cos(x+y)=- \sin (x+y)\left(1+\dfrac{dy}{dx}\right)$$
    $$\Rightarrow \dfrac{dy}{dx}(dx)(1+ \sin (x+y))=- \sin (x+y)$$
    Now slope x+2y=0 is $$1+2\dfrac{dy}{dx}=0 \Rightarrow \dfrac{dy}{dx}=\dfrac{-1}{2}$$
    Now $$+\dfrac{\sin (n+y)}{1+ \sin (x+y)}=+\dfrac{1}{2}$$
    $$2 \sin (x+y)=1+ \sin (x+y)$$
    $$\Rightarrow x+y=(2n+1)\dfrac{\pi }{2}$$ for n= positive integer
    $$x=(2n+1)\dfrac{\pi }{2}-y$$
    $$\therefore y=cos [(2n+1)\dfrac{\pi }{2}-y+y]= \cos \left[(2n+1)\dfrac{\pi }{2}\right]$$
    $$\Rightarrow y=0$$
    Now $$2x\leq x\leq 2x$$
    putting n=0   $$x=\dfrac{\pi }{2}$$
    n=-1 $$x=-\dfrac{3\pi }{2}$$
    Thus i x= $$-\dfrac{3\pi }{2}$$ & $$x=\dfrac{\pi }{2}$$
    $$\therefore $$ Points are $$\left(-\dfrac{3\pi }{2},0\right)$$ and $$\left(\dfrac{\pi }{2},0\right)$$
    Now equation of tangent at $$\left(-\dfrac{3\pi }{2},0\right)$$ and $$\left(\dfrac{\pi }{2},0\right)$$ having solve $$-\dfrac{1}{2}$$ is
    $$2x+4y+3\pi =0$$
    and $$2x+4y-\pi =0$$
  • Question 9
    1 / -0
    The equation of normal to the curve $$x^{3}+y^{3}=8xy$$ at points where it is meet by the curve $$y^{2}=4x$$,other then origin is
    Solution

  • Question 10
    1 / -0
    Tangents are drawn from a point on the circle $$x^2+y^2=25$$ to the ellipse $$9x^2+16y^2-144=0$$ then the angle between the tangents is 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now