Self Studies

Tangents and its Equations Test 37

Result Self Studies

Tangents and its Equations Test 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Tangents are drawn from origin to the curve $$y=\sin{x}+\cos{x}$$. Then their points of contact lie on the curve
    Solution

  • Question 2
    1 / -0
    The slope of normal to the curve y= log (logx) at x = e is 
    Solution
    $$\begin{array}{l} \frac { d }{ { dx } } \log  \left( { \log  x } \right)  \\ Substitute\, u=\log  x \\ =\dfrac { d }{ { du } } \log  u\frac { d }{ { dx } } \log  x \\ =\dfrac { 1 }{ u } \left( { \frac { 1 }{ x }  } \right)  \\ =\dfrac { 1 }{ { \log  x } } \left( { \frac { 1 }{ x }  } \right)  \\ Substitute\, x=e \\ =\dfrac { 1 }{ { \log  e } } \left( { \dfrac { 1 }{ e }  } \right)  \\ =\dfrac { 1 }{ e }  \end{array}$$

  • Question 3
    1 / -0
    The inclination of the tangent at $$\theta = \dfrac {\pi}{3}$$ on the curve $$x = a(\theta + \sin \theta), y = a(1 + \cos \theta)$$ is
    Solution
    For the curve , 

    $$\displaystyle \dfrac{dy}{dx} = \dfrac{\dfrac{dy}{d\theta}}{\dfrac{dx}{d\theta}} = \dfrac{\dfrac{d(a(1+cos\theta))}{d\theta}}{\dfrac{d(a(\theta+sin\theta))}{d\theta}} = \dfrac{-asin\theta}{a+acos\theta} = \dfrac{-sin\theta}{1+cos\theta}$$
      
    So, If the inclination of tangent at $$\theta = \dfrac{\pi}{3}$$ be $$y$$ ,

    Then, $$\tan(y) =$$ $$\dfrac{-sin(\dfrac{\pi}{3})}{1+cos\dfrac{\pi}{3}} = \dfrac{-1}{\sqrt{3}}$$

    Thus,$$ y  = \pi-\dfrac{\pi}{6}= \dfrac{5\pi}{6} $$
  • Question 4
    1 / -0
    Let f be a real-valued differentiable function on R (the set of all real numbers) such that $$f(1)=1$$. If the y-intercept of the tangent at any point P(x, y) on the curve $$y=f(x)$$ is equal to the cube of the abscissa of P, then the value of $$f(-3)$$ is equal to?
    Solution
    $$P\equiv (x,y)$$
    Let slope by $$\cfrac { dy }{ dx } $$
    So, equation of tangent will be 
    $$(X-m)\cfrac { dy }{ dx } =(Y-y)$$
    for Y- intercept , $$x=0$$
    So, $$Y=y-x\cfrac { dy }{ dx } $$
    Now according to question ,
    $${ x }^{ 3 }=y-x\cfrac { dy }{ dx } \\ \cfrac { dy }{ dx } -\cfrac { y }{ x } ={ x }^{ 2 }\\ \cfrac { xdy-ydx }{ { x }^{ 2 } } =-xdx\\ d(\cfrac { y }{ x } )=-xdx$$
    On integrating , we get
    $$\cfrac { y }{ x } =\cfrac { -{ x }^{ 2 } }{ 2 } +C$$
    Now, $$y(1)=1$$
    So, we get $$\cfrac { y }{ x } =\cfrac { -{ x }^{ 2 } }{ 2 } +\cfrac { 3 }{ 2 } $$
    So, $$y(-3)=f(-3)=9$$
  • Question 5
    1 / -0
    The greatest slope among the lines represented by the equation $$4x^2 - y^2 + 2y - 1 = 0 $$ is - 
    Solution
    $$4{x}^{2} - {y}^{2} + 2y - 1 = 0$$
    $${y}^{2} - 2y + 1 = 4{x}^{2}$$
    $${\left( y - 1 \right)}^{2} = {\left( 2x \right)}^{2}$$
    $$y - 1 = \pm 2x$$
    $$y = 2x + 1 \text{ or } y = -2x + 1$$
    Comparing the above equations with $$y = mx + c$$, we have
    Slope $$\left( m \right) = 2, -2$$
    Hence the greatest slope will be $$2$$.
  • Question 6
    1 / -0
    If the tangent at $$(x_{1}, y_{1})$$ to the curve $$x^{3}+y^{3}=a^{3}$$ meets the curve again at $$(x_{2}, y_{2})$$ then
    Solution
    Given $$x^3+y^3=a^3$$
    The derivative is
            $$\dfrac{dy}{dx}=-\dfrac{x^2}{y^2}.....(1)$$
    Therefore, slope of tangent at $$(x_1,y_1)$$ is
               $$-\dfrac{x_1^2}{y_1^2}.........(2)$$
    The tangent passes through $$(x_2,y_2)$$, therefore the slope of tangent is also given by 
                $$\dfrac{y_2-y_1}{x_2-x_1}.......(3)$$
    Comparing the two slope equations we get
    $$\dfrac{y_2-y_1}{x_2-x_1}=-\dfrac{x_1^2}{y_1^2}$$

    $$\dfrac{y_2^3-y_1^3}{x_2^3-x_1^3}\times\dfrac{x_1^2+x_1x_2+x_2^2}{y_1^2+y_1y_2+y_2^2}=-\dfrac{x_1^2}{y_1^2}$$

    $$-\dfrac{x_1^2+x_1x_2+x_2^2}{y_1^2+y_1y_2+y_2^2}=-\dfrac{x_1^2}{y_1^2}$$

    $$x_1^2y_1^2+x_1x_2y_1^2+x_2^2y_1^2=x_1^2y_1^2+x_1^2y_1y_2+x_1^2y_2^2$$

    $$x_1x_2y_1^2+x_2^2y_1^2=x_1^2y_1y_2+x_1^2y_2^2$$

    $$x_1^2y_2^2-x_2^2y_1^2=x_1x_2y_1^2-x_1^2y_1y_2$$

    $$(x_1y_2-x_2y_1)(x_1y_2+x_2y_1)=x_1y_1(x_2y_1-x_1y_2)$$

    $$x_1y_2+x_2y_1=-x_1y_1$$

    $$\dfrac{x_2}{x_1}+\dfrac{y_2}{y_1}=-1$$
  • Question 7
    1 / -0
    The ordinate of all points on the curve $$y=\dfrac{1}{2\sin^{2}x+3\cos^{2}x}$$  where the tangent is horizontal, is
    Solution
    $$y=\dfrac{1}{2sin^{2}x+3cos^{2}x}=\dfrac{1}{2+cos^{2}x}$$
    $$tan\theta =\dfrac{dy}{dx}= \dfrac{-2sinx\, cos x}{(2+cos^{2}x)^{2}}=0$$
    $$\therefore sin\, x=0$$ or $$cos\, x= 0$$
    If $$sin\, x=0, y= \dfrac{1}{3}$$, if $$cos\, x=0, y= \dfrac{1}{2}$$

  • Question 8
    1 / -0
    The curve given by $$x + y = {e^{xy}}$$ has an tangents parallel to the y-axis at the point
    Solution
    $$\dfrac{dy}{dx}$$(differentiate the terms)
    $$1+\dfrac{dy}{dx}=e^{xy}\left(x\dfrac{dy}{dx}+y\right)$$
    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{ye^{xy}-1}{1-xe^{xy}}$$
    Check by option
    $$\dfrac{dy}{dx}\left|_{(0, 1)}\right.=\dfrac{1-1}{1-0}=\dfrac{0}{1}=0$$ Not coming infinity
    $$\displaystyle\dfrac{dy}{dx}\left|_{(1, 0)}\right.=\dfrac{-1}{0}=\infty$$
    This point satisfy
    $$\therefore$$ option B$$(1, 0)$$.

  • Question 9
    1 / -0
    A curve C has the property that if the tangent drawn at any point 'P' on C meets the coordinate axes at A and B, and P is midpoint of AB. If the curve passes through the point $$(1, 1)$$ then the equation of the curve is?
    Solution
    By option verification passing through $$(1,1)$$
    $$xy=1$$
  • Question 10
    1 / -0

    Number of possible tangents to the curve $$y = \cos \left( {x + y} \right), - 3\pi  \leqslant x \leqslant 3\pi $$, that are parallel to the line $$x + 2y = 0$$, is

    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now