Self Studies

Tangents and its Equations Test 40

Result Self Studies

Tangents and its Equations Test 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the slope of one of the lines represented $${a^3}{x^2} + 2hxy + {b^3}{y^2} = 0$$ be the square of the other, then $$ab(a+b)$$ is equal to:
    Solution

  • Question 2
    1 / -0
    Slope of tangent to the circle $$( x - r ) ^ { 2 } + y ^ { 2 } = r ^ { 2 }$$ at the point $$( x , y )$$ lying on the circle is

    Solution
    $$(x-r)^2+y^2=r^2$$

    $$\dfrac{d}{dx}(x-r)^2+\dfrac{d}{dx}(y^2)=\dfrac{d}{dx}(r^2)$$

    $$2(x-r)+2y\dfrac{dy}{dx}=0$$

    $$x-r+y\dfrac{d}{dx}=0$$

    Therefore the slope of the tangent is,

    $$\dfrac{dy}{dx}=\dfrac{r-x}{y}$$
  • Question 3
    1 / -0
    The slope of the straight line which is both tangent and normal to the curve $$4x^3=27y^2$$ is 
    Solution
      $$ Given: $$
     $$ 4{{x}^{3}}=27{{y}^{2}} $$
     $$ differentiating\,w.r.t.x $$
     $$ 12{{x}^{2}}=54yy' $$
     $$ t $$
     $$ The\text{ line is tangent at}\,\text{P}\left( 3{{t}^{2}},2{{t}^{3}} \right)and\,normal\,at\left( 3t_{1}^{2},2t_{1}^{3} \right) $$
     $$ \frac{dy}{dx}=\frac{2\left( 9{{t}^{4}} \right)}{9\left( 2{{t}^{3}} \right)}=1 $$
     $$ equation\,to\,\tan gent\,P\left( t \right)is $$
     $$ y-2{{t}^{3}}=t\left( x-3{{t}^{2}} \right) $$
     $$ \Rightarrow tx-y={{t}^{3}}\,\,\,\,\,........\left( i \right) $$
     $$ Equation\,to\,normal\,atQ\left( t_{1}^{{}} \right)is $$
     $$ y-2t_{1}^{3}=-\frac{1}{t_{1}^{{}}}\left( x-3t_{1}^{2} \right) $$
     $$ \Rightarrow x+t_{1}^{{}}y=2t_{1}^{4}+3t_{1}^{2}\,\,\,\,\,\,\,\,...........\left( ii \right) $$
     $$ \left( i \right)\,and\left( ii \right)are\,identical $$
     $$ \frac{t}{1}=\frac{-1}{t_{1}^{{}}}=\frac{{{t}^{3}}}{2t_{1}^{4}+3t_{1}^{2}} $$
     $$ \Rightarrow {{t}^{2}}=\frac{2}{{{t}^{4}}}+\frac{3}{{{t}^{2}}}\,\,\,\,\,\,\,\,or\,\,t_{1}^{{}}=-\frac{1}{t} $$
     $$ \Rightarrow {{t}^{6}}=2+3{{t}^{2}} $$
     $$ \Rightarrow {{t}^{6}}-3{{t}^{2}}-2=0 $$
     $$ \Rightarrow {{t}^{2}}=2 $$
     $$ t=\pm \sqrt{2} $$

  • Question 4
    1 / -0
    The angle between the curves $$y = \sin x$$ and $$y = \cos x$$ is 
    Solution
    C₁ : $$y = \sin x$$, C₂ : $$y = \cos x$$.
    Equating the $$y$$' s,
    $$\sin x = \cos x$$ ∴ $$x = \dfrac{\pi}{4} $$
    ∴ curves intersect each other at the point P : $$x = \dfrac{\pi}{4}$$.
    Now, differentiating w.r.t. $$x$$,
    C₁ gives : $$\dfrac{dy}{dx} = \cos x$$ 
    C₂ gives : $$\dfrac{dy}{dx} = - \sin x$$. 
    Hence slopes $m₁ and m₂ of C₁ and C₂ at P : $$x = \dfrac{π}{4}$$ are
    m₁ $$= \cos \dfrac{π}{4} = \dfrac{1}{√2}$$ 
    m₂ =$$ - \sin \dfrac{π}{4} = -\dfrac{1}{√2}$$.
    If $$θ$$ is the acute angle between them at $$P$$, then 
    $$tan θ =\dfrac{ | ( m₁ - m₂ )|}{ |( 1 + m₁m₂ ) |}$$ 
    $$=\dfrac{ | ((\dfrac{1}{√2}) - (-\dfrac{1}{√2}))| }{ |( 1 + (\dfrac{1}{√2})(-\dfrac{1}{√2})) | }$$
    $$=\dfrac{ | 2( \dfrac{1}{√2 })|}{  |( \dfrac{(2-1)} { (2)} | }$$
     $$= 2√2 $$
    ∴ $$θ = \tanֿ¹ ( 2√2 ) $$
  • Question 5
    1 / -0
    The tangent at any point of the curve $$x={ at }^{ 3 },y={ at }^{ 4 }$$ divides the abscissa of the point of contact in the ratio
    Solution
    Given:
    $$x = at^2$$
    $$y = at^4$$

    Then,
    $$\Rightarrow t^3 = \dfrac{x}{a}, t^4= \dfrac{y}{a}$$

    $$\Rightarrow t = \left(\dfrac{x}{a}\right)^{1/3}\,  t = \left(\dfrac{y}{a}\right)^{1/4}$$

    $$\Rightarrow \left(\dfrac{x}{a}\right)^{1/3} = \left(\dfrac{y}{a}\right)^{1/4}$$

    $$\Rightarrow \left(\dfrac{x}{a}\right)^{\frac{1}{3}\times \frac{4}{12}} = \left(\dfrac{y}{a} \right)^{\frac{1}{4}\times 12}$$ 

    $$\Rightarrow \dfrac{x^4}{a^4} = \dfrac{y^3}{a^2}$$

    $$\Rightarrow  y^3 = \dfrac{x^4}{a}$$ at $$P(h,k)$$ 

    Also relation $$k^3 = \dfrac{h^4}{a}$$

    Now by differentiation of after equation we get

    $$3y^2 \dfrac{dy}{dx} = \dfrac{4x^2}{a}$$

    $$\dfrac{dy}{dx} = \dfrac{4x^3}{3ay^2}$$

    Now $$M_T = \dfrac{dy}{dx} = \dfrac{4x^3}{3ay^2}$$

    Now we will find slope of tangent

    $$M_T / P(h,x) = \dfrac{4h^3}{3ax^2}$$

    equation of tangent $$P(h,k)$$

    $$y - k = \dfrac{4h^3}{3ak^2}(x-h)$$

    $$\Rightarrow $$ Let $$y = 0$$

    Then, $$-k = \dfrac{4h^3}{3ak^2}(x-h)$$

    $$\Rightarrow \dfrac{-3ak^3}{4h^3} = x - h$$

    Earlier we found that $$k^3 = \dfrac{h^4}{a}$$

    Then $$ax^3 = h^4$$

    $$\dfrac{-3h^4}{4h^2} = x-h$$ 

    $$\Rightarrow \dfrac{-3h}{4}+h = x$$

    $$\Rightarrow x = \dfrac{h}{4}$$

    $$\Rightarrow \dfrac{x}{h} = \dfrac{1}{4}$$

    Hence option (a) $$1 : 4$$ is the correct choice

  • Question 6
    1 / -0
    The tangent to the curve $$y=e^{2x}$$ at the point $$(0, 1)$$ meets x-axis at?
    Solution
    solution -  equation of curve is y=$$e^{2x}$$
    tangent to the curve is 
    $$\frac{dy}{dx}=2e^{2x}$$
    $$(\frac{de^{x}}{dx}=e^{x})$$
    At points (0,1), the tangent  is 
    $$(\frac{dy}{dx})_{(0,1)}=2e^{2(0)}$$
    $$(\frac{dy}{dx})_{(0,1)}=2e^{0}$$           $$[e^{0}=1]$$
    $$\frac{dy}{dx}_{0,1}=2$$
    when the slope is 2, and solve the tangent 
    meets y axis the coordinate is 0,
    Hence the tangent meets the x axis at (2,0)

  • Question 7
    1 / -0
    The tangent to the curve, $$y = xe^{x^2}$$ passing through the point $$(1, e)$$ also passes through the point:
    Solution
    $$y = xe^{x^2}$$

    $$\dfrac{dy}{dx}\left|_{(1,e)} = \left(x\cdot e^{x^2} \cdot 2x+e^{x^2}\right)\right|_{1,e} = 2\cdot e + e = 3e$$

    $$T : y - e = 3e (x - 1)$$

    $$y = 3ex - 3e + e$$

    $$y = (3e) x - 2e$$

    Out of the options only option:A

    $$\left(\dfrac{4}{3}, 2e\right)$$ lies on it as $$2e=3e\times  \dfrac 43-2e\Rightarrow 2e=2e$$
  • Question 8
    1 / -0
    Three normals are drawn from the point $$\left(c,0\right)$$ to the curve $${y}^{2}=x.$$If two of the normals are perpendicular to each other,then $$c=$$
    Solution
      $$ Let\,the\text{ equation of normal to }{{\text{y}}^{2}}=4ax\,is $$
     $$ y=mx-2am-a{{m}^{2}} $$
     $$ \therefore equation\,of\,normal\,for\,{{y}^{2}}=x\,is $$
     $$ y=mx-\frac{m}{2}-\frac{1}{4}{{m}^{3}}which\,passes\,through\left( c,0 \right) $$
     $$ \therefore 0=m\left( c-\frac{1}{2}-\frac{{{m}^{2}}}{4} \right) $$
     $$ \Rightarrow m=0\,\,and\,\frac{{{m}^{2}}}{4}=c-\frac{1}{2} $$
     $$ \Rightarrow m=\pm 2\sqrt{c-\frac{1}{2}} $$
     $$ \text{which gives a normal as x-axis  and for other two normal} $$
     $$ c-\frac{1}{2}>0 $$
     $$ \Rightarrow c>\frac{1}{2} $$
     $$ N\text{ow, if normals are perpendicular}\text{.} $$
     $$ \left( 2\sqrt{c-\frac{1}{2}} \right)\left( -2\sqrt{c-\frac{1}{2}} \right)=-1 $$
     $$ \Rightarrow c-\frac{1}{2}=\frac{1}{4} $$
     $$ \Rightarrow c=\frac{3}{4} $$

  • Question 9
    1 / -0
    If the line $$x+y=0$$ touches the curve $$2y^2=\alpha x^2+\beta $$ at $$(1,-1),$$ then $$(\alpha ,\beta )=$$
    Solution
    Given equation of curve is,
    $$2{ y }^{ 2 }=\alpha { x }^{ 2 }+\beta $$

    Point $$\left( 1,-1 \right) $$ lies on the curve. Thus, it must satisfy given equation of curve.

    $$\therefore 2{ \left( -1 \right)  }^{ 2 }=\alpha { \left( 1 \right)  }^{ 2 }+\beta $$

    $$\therefore 2\left( 1 \right) =\alpha { \left( 1 \right)  }+\beta $$

    $$\therefore 2=\alpha +\beta $$           (1)

    Now, equation of tangent to curve is,
    $$x+y=0$$
    $$\therefore y=-x$$

    Thus, slope of tangent is, $${ m }_{ 1 }=-1$$         (2)

    Equation of the curve is,
    $$2{ y }^{ 2 }=\alpha { x }^{ 2 }+\beta $$
    Differentiate w.r.t. x, we get,

    $$2\times 2y\frac { dy }{ dx } =2\alpha x+0$$

    $$\therefore 4y\frac { dy }{ dx } =2\alpha x$$

    $$\therefore \frac { dy }{ dx } =\frac { 2\alpha x }{ 4y } $$

    Slope of curve at $$\left( 1,-1 \right) $$ is,
    $${ m }_{ 2 }=\frac { 2\alpha \times 1 }{ 4\times -1 } $$

    $${ m }_{ 2 }=\frac { 2\alpha  }{ -4 } $$

    $$\therefore { m }_{ 2 }=\frac { \alpha  }{ -2 } $$      (3)

    At point $$\left( 1,-1 \right) $$, slope of tangent and normal will be same.
    Thus, from equation (2) and (3),

    $$\frac { \alpha  }{ -2 } =-1$$

    $$\therefore \alpha =2$$

    Put this value in equation (1), we get,

    $$2+\beta =2$$

    $$\therefore \beta =0$$
    $$\therefore \left( \alpha ,\beta  \right) =\left( 2,0 \right) $$
  • Question 10
    1 / -0
    Equation of the tangent at (1, -1) to the curve
    $${ x }^{ 3 }-x{ y }^{ 2 }-4{ x }^{ 2 }-xy+5x+3y+1=0$$ is 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now