Given equation of curve is,
$$2{ y }^{ 2 }=\alpha { x }^{ 2 }+\beta $$
Point $$\left( 1,-1 \right) $$ lies on the curve. Thus, it must satisfy given equation of curve.
$$\therefore 2{ \left( -1 \right) }^{ 2 }=\alpha { \left( 1 \right) }^{ 2 }+\beta $$
$$\therefore 2\left( 1 \right) =\alpha { \left( 1 \right) }+\beta $$
$$\therefore 2=\alpha +\beta $$ (1)
Now, equation of tangent to curve is,
$$x+y=0$$
$$\therefore y=-x$$
Thus, slope of tangent is, $${ m }_{ 1 }=-1$$ (2)
Equation of the curve is,
$$2{ y }^{ 2 }=\alpha { x }^{ 2 }+\beta $$
Differentiate w.r.t. x, we get,
$$2\times 2y\frac { dy }{ dx } =2\alpha x+0$$
$$\therefore 4y\frac { dy }{ dx } =2\alpha x$$
$$\therefore \frac { dy }{ dx } =\frac { 2\alpha x }{ 4y } $$
Slope of curve at $$\left( 1,-1 \right) $$ is,
$${ m }_{ 2 }=\frac { 2\alpha \times 1 }{ 4\times -1 } $$
$${ m }_{ 2 }=\frac { 2\alpha }{ -4 } $$
$$\therefore { m }_{ 2 }=\frac { \alpha }{ -2 } $$ (3)
At point $$\left( 1,-1 \right) $$, slope of tangent and normal will be same.
Thus, from equation (2) and (3),
$$\frac { \alpha }{ -2 } =-1$$
$$\therefore \alpha =2$$
Put this value in equation (1), we get,
$$2+\beta =2$$
$$\therefore \beta =0$$
$$\therefore \left( \alpha ,\beta \right) =\left( 2,0 \right) $$