Self Studies

Tangents and its Equations Test 41

Result Self Studies

Tangents and its Equations Test 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The angle made by the tangent at any point on the curve $$x=a(t+\sin { t } \cos { t } ),y=a{ (1+\sin { t } ) }^{ 2 }$$ with x-axis is
    Solution
    Given,

    $$x=a(t+\sin t \cos t)$$

    $$\dfrac{dx}{dt}=\dfrac{d}{dt}a(t+\sin t \cos t)$$

    $$\therefore \dfrac{dx}{dt}=a[1+\cos ^2t-\sin ^2t]=a\left(1+\cos \left(2t\right)\right)=2a\cos ^2t$$

    $$y=a(1+\sin t)^2$$

    $$\dfrac{dy}{dt}=\dfrac{d}{dt}a(1+\sin t)^2$$

    $$\therefore \dfrac{dy}{dt}=2a\left(1+\sin \left(t\right)\right)\cos \left(t\right)$$

    $$\Rightarrow \dfrac{dy}{dx}$$

    $$=\dfrac{2a\left(1+\sin \left(t\right)\right)\cos \left(t\right)}{2a\cos ^2t}$$

    $$=\dfrac {1+\sin t}{\cos t}$$

    $$=\dfrac{\cos \frac{t}{2}+\sin \frac{t}{2}}{\cos \frac{t}{2}-\sin \frac{t}{2}}$$

    $$=\dfrac{1+\tan \frac{t}{2}}{1 -\tan \frac{t}{2}}$$

    $$=\tan \left ( \dfrac{\pi }{4}+\dfrac{t}{2} \right )$$

    angle made by tangent,

    $$\tan \theta =\tan \left ( \dfrac{\pi }{4}+\dfrac{t}{2} \right )$$

    $$\Rightarrow \theta =\dfrac{\pi }{4}+\dfrac{t}{2}$$
  • Question 2
    1 / -0
    If tangent at any point on the curve $${ y }^{ 2 }=1+{ x }^{ 2 }\ makes\ an\ angle\ \theta $$ with positive direction of the x-axis then
    Solution

  • Question 3
    1 / -0
    The equation of the normal to the curve $$y=(1+x)^{ y }+\sin { ^{ -1 }(\sin ^{ 2 }{ x)\ at\ x=0\ is }  } $$.
    Solution

  • Question 4
    1 / -0
    If the line $$ax+y=c$$, touches both the curves $${x}^{2}+{y}^{2}=1$$ and $${y}^{2}=4\sqrt{2}x$$, then $$\left| c \right| $$ is equal to:
    Solution
    Tangent to $${y}^{2}=4\sqrt{2}x$$ is $$y=mx+\cfrac { \sqrt { 2 }  }{ m } $$ is also tangent to $${x}^{2}+{y}^{2}=1$$

    $$\Rightarrow \left| \cfrac { \sqrt { 2 } /m }{ \sqrt { 1+{ m }^{ 2 } }  }  \right| =1\Rightarrow m=\pm 1$$

    Tangent will be $$y=x+\sqrt{2}$$ or $$y=-x-\sqrt{2}$$

    compare with $$y=-ax+c$$

    $$\Rightarrow a=\pm 1;c=\pm \sqrt { 2 } $$

    $$\therefore |c|=\sqrt 2$$
  • Question 5
    1 / -0
    The equation of the normal to the curve$$y=\left( 1+x \right) ^{ y }+{ sin }^{ -1 }\left( { sin }^{ 2 }x \right) at\quad x=0$$ is
    Solution
    Given,

    $$y=(1+x)^y+\sin ^{-1}(\sin ^2x)$$

    when $$x=0$$

    $$y=1^y+0=1$$

    $$\therefore (x_1,y_1)=(0,1)$$

    $$\dfrac{dy}{dx}=(1+x)^y\left [ \ln (1+x)\dfrac{dy}{dx}+\dfrac{y}{1+x} \right ]+\dfrac{2\sin x\cos x}{\sqrt{1-\sin ^4x}}$$

    $$\dfrac{dy}{dx}_{(0,1)}=1[1]+0$$

    $$\therefore \dfrac{dy}{dx}_{(0,1)}=1$$

    Therefore, slope of normal is $$-1$$

    Equation of normal,

    $$y-y_1=\dfrac{-1}{\frac{dy}{dx}}(x-x_1)$$

    $$y-1=(-1)(x-0)$$

    $$y-1=-x$$

    $$x+y=1$$ is the equation of normal
  • Question 6
    1 / -0
    The sum of the length of sub tangent of sub tangent and tangent to the curve
    $$x=c\left[ 2cos\theta -log\left( cos\quad ec\theta +cot\theta  \right)  \right] ,y=csin2\theta \quad at\quad \theta =\frac { \pi  }{ 3 } is$$
    Solution
    Given,

    $$x=c[2\cos \theta −\log (\csc \theta +\cot \theta )]$$ 
     
    $$\Rightarrow \dfrac {dx}{d\theta }=c(-2\sin \theta +\csc \theta )$$

    $$y=c\sin 2\theta $$

    $$\dfrac{dy}{d\theta }=2c\cos 2\theta $$

    Also, $$y_1=c\sin \dfrac{2\pi }{3}=\dfrac{c\sqrt 3}{2}$$

    Slope of tangent at $$\theta =\dfrac{\pi }{3}$$ is

    $$m=\dfrac{dy}{dx}_{\theta =\frac{\pi }{3}}=\sqrt 3$$

    Length of tangent $$=\left | \dfrac{y_1\sqrt{1+m^2}}{m} \right |=c$$

    Length of subtangent $$=\left | \dfrac{y_1}{m} \right |=\dfrac{c}{2}$$

    Required sum $$=c+\dfrac{c}{2}=\dfrac{3c}{2}$$
  • Question 7
    1 / -0
    Length of the normal to the curve at any point on the curve $$y=\dfrac { a\left( { e }^{ x/a }+{ e }^{ -x/a } \right)  }{ 2 } $$ varies as 
    Solution
    Given,

    $$y=\dfrac{a(e^{\frac{x}{a}}+e^{-\frac{x}{a}})}{2}$$

    $$\Rightarrow y=a\cos h\left ( \dfrac{x}{a} \right )$$

    $$\dfrac{dy}{dx}=a \sin h\left ( \dfrac{x}{a} \right )\dfrac{1}{a}$$

    $$=\sin h\left ( \dfrac{x}{a} \right )$$

    Length of normal $$=y\left [ 1+\left (\dfrac{dy}{dx}  \right )^2 \right ]^{\frac{1}{2}}$$

    $$=a\cos h\left ( \dfrac{x}{a} \right )\left [ 1+ \sin ^2h\left ( \dfrac{x}{a} \right )\right ]^{\frac{1}{2}}$$

    $$=a\cos h\left ( \dfrac{x}{a} \right )\left [ \cos ^2h\left ( \dfrac{x}{a} \right ) \right ]^{\frac{1}{2}}$$

    $$=a\cos ^2h\left ( \dfrac{x}{a} \right )$$

    $$=a \times \dfrac{y^2}{a^2}$$

    $$=\dfrac{y^2}{a}$$

  • Question 8
    1 / -0
    If the tangent to the curve $$x=at^2, y=2at$$ is perpendicular to $$x$$-axis, then its point of contact is
    Solution
    Let the required point be $$(x_1,y_1).$$

    It is given that points lies on the curve.

    $$\therefore$$  $$x_1=at^2$$ and $$y_1=2at$$

    Now,
    $$x=at^2$$ and $$y=2at$$

    Differentiating w.r.t. $$t,$$ we get

    $$\Rightarrow$$  $$\dfrac{dx}{dt}=2at$$ and $$\dfrac{dy}{dt}=2a$$

    $$\Rightarrow$$  $$\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}$$

    $$\Rightarrow$$  $$\dfrac{dy}{dx}=\dfrac{2a}{2at}$$

    $$\Rightarrow$$  $$\dfrac{dy}{dx}=\dfrac{1}{t}$$

    $$\Rightarrow$$  $$\dfrac{dy}{dx}=\dfrac{2a}{y}$$                  [ Since, $$y=2at$$ ]

    Slope of the tangent $$=\left(\dfrac{dy}{dx}\right)_{(x_1,y_1)}=\dfrac{2a}{y_1}$$

    It is given that the tangent is perpendicular to the $$y-axis.$$

    It means theta it is parallel to the $$x-axis.$$

    $$\therefore$$  Slope of the tangent $$=$$ Slope of the $$x-axis.$$

    $$\Rightarrow$$  $$\dfrac{2a}{y_1}=0$$

    $$\Rightarrow$$  $$a=0$$

    Now,

    $$x_1=at^2=(0)t^2=0$$

    $$y_1=2at=2(0)t=0$$

    $$\therefore$$  $$(x_1,y_1)=(0,0)$$
  • Question 9
    1 / -0
    The slope of the tangent to the curve $$x=t^2+3t-8, y=2t^2-2t-5$$ at point $$(2, -1)$$ is
    Solution
    $$x=t^2+3t-8$$ ........$$(1)$$
    $$y=2t^2-2t-5$$ ..........$$(2)$$

    Differentiate $$(1)$$, we get
    $$\dfrac{dx}{dt}=2t+3$$

    Differentiate $$(2)$$, we get
    $$\dfrac{dy}{dx}=4t-2$$
    $$m=\dfrac{dy}{dx}=\dfrac{4t-2}{2t+3}$$

    Given point is $$(2, -1)$$
    Put the point in original x and y, we get
    $$\Rightarrow x=t^2+3t-8$$
    $$2=t^2+3t-8$$
    $$t^2+3t-10=0$$
    $$(t-2)(t+5)=0$$
    $$t=2, t=-5$$

    $$\Rightarrow y=2t^2-2t-5$$
    $$(-1)=2t^2-2t-5$$
    $$2t^2-2t-4=0$$
    $$(t+1)(t-2)=0$$
    $$t=-1, t=2$$

    Since, $$t=2$$ common in both parts, so we take
    $$\dfrac{dy}{dx}=\dfrac{4t-2}{2t-3}$$ at $$t=2$$

    At $$t=2$$
    $$\dfrac{dy}{dx}=\dfrac{4(2)-2}{2(2)-3}=\dfrac{8-2}{4+3}=\dfrac{6}{7}$$

    $$m=\dfrac{dy}{dx}=\dfrac{6}{7}$$.
  • Question 10
    1 / -0
    At what points the slope of the tangent to the curve $$x^2+y^2-2x-3=0$$ is zero?
    Solution
    $$x^2+y^2-2x-3=0$$ is zero.

    Differentiate w.r.t. x
    $$2x+2y\dfrac{dy}{dx}-2=0$$

    $$2y\cdot \dfrac{dy}{dx}=2-2x$$

    $$\dfrac{dy}{dx}=\dfrac{2(1-x)}{2y}$$

    $$\dfrac{dy}{dx}=\dfrac{1-x}{y}$$ ........$$(1)$$

    If line is parallel to x-axis
    Angle with x-axis $$=\theta =0$$
    Slope of x-axis$$=\tan\theta =\tan 0^o=0$$
    Slope of tangent $$=$$ Slope of x-axis

    $$\dfrac{dy}{dx}=0$$

    $$\dfrac{1-x}{y}=0$$

    $$x=1$$

    Finding y when $$x=1$$
    $$x^2+y^2-2x-3=0\\$$
    $$(1)^2+y^2-2(1)-3=0\\$$
    $$1+y^2-2-3=0\\$$
    $$y=\pm 2$$

    Hence, the points are $$(1, 2)$$ and $$(1, -2)$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now