Self Studies

Tangents and its Equations Test 42

Result Self Studies

Tangents and its Equations Test 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The slope of the tangent to the curve $$x=3t^2+1, y=t^3-1$$ at $$x=1$$ is
    Solution
    Given curves are,
    $$x=3t^2+1$$           ---- ( 1 )
    $$y=t^3-1$$             ---- ( 2 )
    Substituting $$x=1$$ in ( 1 ) we get,
    $$\Rightarrow$$  $$3t^2+1=1$$
    $$\Rightarrow$$  $$3t^2=0$$
    $$\Rightarrow$$  $$t=0$$
    Differentiate ( 1 ) w.r.t. $$t,$$ we get
    $$\Rightarrow$$  $$\dfrac{dx}{dt}=6t$$
    Differentiate ( 2 ) w.r.t. $$t,$ we get
    $$\Rightarrow$$  $$\dfrac{dy}{dt}=3t^2$$

    $$\Rightarrow$$  $$\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{3t^2}{6t}$$

    $$\therefore$$  $$\dfrac{dy}{dx}=\dfrac{t}{2}$$

    Slope of the tangent $$=\left(\dfrac{dy}{dx}\right)_{t=0}=\dfrac{0}{2}=0$$

  • Question 2
    1 / -0
    The point on the curve $$y=12x-x^2$$, where the slope of the tangent is zero will be
    Solution
    Let the point be $$P(x, y)$$
    $$y=12x-x^2$$
    $$\dfrac{dy}{dx}=12-2x$$
    $$\left(\dfrac{dy}{dx}\right)_{(x_1, y_1)}=12-2x_1$$

    since slope of tangent is zero
    so $$\left(\dfrac{dy}{dx}\right)_{x_1, y_1}=0$$
    $$12-2x_1=0$$
    $$2x_1=12$$
    $$x_1=6$$

    Also curve passing through tangent
    $$y_1=12x_1-x^2_1$$
    $$y_1=12\times 6-36$$
    $$y_1=72-36$$
    $$y_1=36$$
    The points are $$(6, 36)$$.
  • Question 3
    1 / -0
    The point on the curve $$y=x^2-3x+2$$ where tangent is perpendicular to $$y=x$$ is
    Solution
    $$y=x^2-3x+2$$                  [ Given ]

    $$y=x$$                           [ Given ]

    Differentiating both sides w.r.t. $$x,$$ we get

    $$\Rightarrow$$  $$\dfrac{dy}{dx}=1$$

    Let $$(x_1,y_1)$$ be the required point.

    It is given that point lies on the curve.

    $$\therefore$$  $$y_1=x_1^2-3x_1+2$$

    $$\Rightarrow$$  $$y=x^2-3x+2$$

    Differentiating both sides w.r.t. $$x,$$ we get

    $$\therefore$$  $$\dfrac{dy}{dx}=2x-3$$

    Slope of the tangent $$=\left(\dfrac{dy}{dx}\right)_{(x_1,y_1)}=2x_1-3$$

    The tangent is perpendicular to the line.

    $$\therefore$$  Slope of the tangent $$=\dfrac{-1}{slope\,of\,the\,line}=\dfrac{-1}{1}=-1$$

    Now,

    $$2x_1-3=-1$$

    $$\Rightarrow$$  $$2x_1=2$$

    $$\Rightarrow$$  $$x_1=1$$

    $$\Rightarrow$$  $$y_1=x_1^2-3x_1+2$$

    $$\Rightarrow$$  $$y_1=(1)^2-3(1)+2$$

    $$\Rightarrow$$  $$y_1=1-3+2$$

    $$\therefore$$  $$y_1=0$$

    $$\therefore$$  $$(x_1,y_1)=(1,0)$$

  • Question 4
    1 / -0
    Any tangent to the curve $$y=2x^7+3x+5$$
    Solution
    We have, $$y=2x^7+3x+5$$

    $$\dfrac{dy}{dx}=14x^6+3$$

    $$\Rightarrow \dfrac{dy}{dx} > 3$$ ($$\because x^6$$ is always positive for any real value)

    $$\Rightarrow \dfrac{dy}{dx} > 0$$ so, $$\tan \theta > 0$$

    Hence, $$\theta$$ lies in first quadrant.

    Thus, the tangent to curve makes an acute angle.
  • Question 5
    1 / -0
    The normal to the curve $$x^2=4y$$ passing through $$(1, 2)$$ is
    Solution
    Curve is $$x^2=4y$$

    Diff wrt to x
    $$2x=\dfrac{4dy}{dx}\Rightarrow \dfrac{dy}{dx}=\dfrac{x}{2}$$

    Slope of normal $$=\dfrac{-1}{dy/dx}=\dfrac{-2}{x}$$
    Let (h, k) be the point where normal and curve intersects
    $$\therefore$$ Slope of normal at (h, k)$$=-2/h$$

    Equation of normal passes through (h, k)
    $$y-y_1=m(x-x_1)$$
    $$y-k=\dfrac{-2}{h}(x-h)$$

    Since normal passes through $$(1, 2)$$
    $$2-k=\dfrac{-2}{h}(1-h)$$
    $$k=2+\dfrac{2}{h}(1-h)$$ ..........$$(1)$$

    since (h, k) lies on the curve $$x^2=4y$$
    $$h^2=4k$$
    $$k=\dfrac{h^2}{4}$$ ....... $$(2)$$

    using $$(1)$$ and $$(2)$$
    $$2+\dfrac{2}{h}(1-h)=\dfrac{h^2}{4}$$
    $$\dfrac{2}{h}=\dfrac{h^2}{4}$$
    $$h=2$$

    Putting $$h=2$$ in $$(2)$$
    $$k=\dfrac{h^2}{4}, k=1$$
    $$h=2$$ and $$k=1$$ putting in equation of normal

    $$\Rightarrow y-k=\dfrac{-2(k-h)}{h}$$

    $$\Rightarrow y-1=\dfrac{-2(x-2)}{2}=y-1=-1(x-2)$$

    $$\Rightarrow y-1=-x+2\\$$
    $$\Rightarrow x+y=2+1\\$$
    $$\Rightarrow x+y=3$$.
  • Question 6
    1 / -0
    Mark the correct alternative of the following.
    The point on the curve $$9y^2=x^3$$, where the normal to the curve makes equal intercepts with the axes is?
    Solution
    Let the required point be $$(x_1, y_1)$$

    equation of the curve is $$9y^2=x^2$$

    since $$(x_1, y_1)$$ lies on the curve, therefore
    $$9y^2_1=x^3_1$$ .......$$(1)$$

    Now $$9y^2=x^3$$
    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{x^2}{6y}$$

    $$\Rightarrow \left(\dfrac{dy}{dx}\right)_{(x_1, y_1)}=\dfrac{x^2}{6y^1}$$

    since normal to the curve at $$(x_1, y_1)$$ makes equal intersepts with the coordinate axis, therefore slope of the normal $$=\pm 1$$

    $$\Rightarrow \dfrac{1}{-(dy/dx)_{(x_1, y_1)}}=\pm 1$$

    $$\Rightarrow (dy/dx)_{(x_1, y_1)}=\pm 1$$

    $$\rightarrow \dfrac{x^2_1}{6y^1}=\pm 1$$

    $$\Rightarrow x^4_1=36y^2_1=36\left(\dfrac{x^3_1}{9}\right)$$ (using $$1$$)

    $$\Rightarrow x^4_1=4x^3_1\Rightarrow x^3_1(x_1-4)=0$$

    $$\Rightarrow x_1=0, 4$$

    Putting $$x_1=0$$ in $$(1)$$ we get
    $$9y^2_1=0\Rightarrow y_1=0$$

    Putting $$x_1=4$$ in $$(1)$$ we get
    $$9y^2_1=(4)^3\Rightarrow y_1=\pm \dfrac{8}{3}$$

    But the line making equal intersepts with the coordinate axes cannot pass through origin.

    Hence, the required points are $$\left(4, \dfrac{8}{3}\right)$$ and $$\left(4, \dfrac{-8}{3}\right)$$.
  • Question 7
    1 / -0
    Mark the correct alternative of the following.
    The line $$y=mx+1$$ is a tangent to the curve $$y^2=4x$$, if the value of m is?
    Solution
    Given equation of the tangent to the given curve
    $$y=mx+1$$
    Now substituting the value of y in
    $$y^2=4x$$, we get
    $$\Rightarrow (mx+1)^2=4x$$
    $$\Rightarrow m^2x^2+1+2mx-4x=0$$
    $$\Rightarrow m^2x^2+x(2m-4)+1=0$$ ..........$$(1)$$
    Since, a tangent touches the curve at one point, the root of equation $$(1)$$ must be equal.
    Thus, we get
    Discriminant, $$D=b^2-4ac=0$$
    $$(2m-4)^2-4(m^2)(1)=0$$
    $$\Rightarrow 4m^2-16m+16-4m^2=0$$
    $$\Rightarrow -16m+16=0$$
    $$\Rightarrow m=1$$.
  • Question 8
    1 / -0
    The slope of the tangent to the curve $$x=t^2+3t-8, y=2t^2-2t-5$$ at the point $$(2, -1)$$ is
    Solution
    Given curve 

    $$x = t^2 + 3t - 8$$ and $$y = 2t^2 - 2t - 5$$

    slope of tangent to the curve $$= \dfrac{dy}{dx} = \dfrac{dy/dt}{dx / dt}$$

    $$\therefore \dfrac{dx}{dt} = 2t + 3 , \, \dfrac{dy}{dt} = 4t - 2$$

    $$\dfrac{dy}{dx} = \dfrac{dy/dt}{dx/dt} = \dfrac{4t - 2}{2t + 3}$$

    $$\left(\dfrac{dy}{dx} \right)_{t = 2} $$     $$\dfrac{4(2) - 2}{2(2) + 3} = \dfrac{6}{7}$$
  • Question 9
    1 / -0
    Consider the equation $$x^y=e^{x-y}$$
    What is $$\dfrac{d^2y}{dx^2}$$ at $$x=1$$ equal to ?
    Solution
    $${x}^{y} = {e}^{x - y}$$
    Taking $$\log$$ both sides, we have

    $$y \log{x} = \left( x - y \right) \log{e}$$

    $$y \log{x} = x - y ..... \left( 1 \right)$$

    $$\dfrac{y}{x}=1+\log x$$

    At $$x = 1 \Rightarrow y = 1$$

    Differentiating equation $$\left( 1 \right)$$ w.r.t. $$x$$, we have

    $$\cfrac{dy}{dx} \log{x} + \cfrac{y}{x} = 1 - \cfrac{dy}{dx}$$

    $$\Rightarrow \left( 1 + \log{x} \right) \cfrac{dy}{dx} = 1 - \cfrac{y}{x}$$

    $$\Rightarrow \cfrac{dy}{dx} = \cfrac{x - y}{x \left( 1 + \log{x} \right)}$$

    $$\Rightarrow \cfrac{dy}{dx} = \cfrac{y \log{x}}{x \left( 1 + \log{x} \right)}$$

    $$\Rightarrow \cfrac{dy}{dx} = \cfrac{\log{x}}{{\left( 1 + \log{x} \right)}^{2}}$$

    Again differentiating above equation w.r.t. $$x$$, we have

    $$\cfrac{{d}^{2}y}{d{x}^{2}} = \cfrac{{\left( 1 + \log{x} \right)}^{2} \cdot \frac{1}{x} - \log{x} \cdot 2 \left( 1 + \log{x} \right) \frac{1}{x}}{{\left( 1 + \log{x} \right)}^{4}}$$

    $$\Rightarrow \cfrac{{d}^{2}y}{d{x}^{2}} = \cfrac{\frac{1}{x} \left( 1 - \log{x} \right)}{{\left( 1 + \log{x} \right)}^{3}}$$

    At $$x = 1$$,
    $$\cfrac{{d}^{2}y}{d{x}^{2}} = 1$$
  • Question 10
    1 / -0
    Consider the equation $$x^y=e^{x-y}$$
    What is $$\dfrac{dy}{dx}$$ at $$x=1$$ equal to ?
    Solution
    $${x}^{y} = {e}^{x - y}$$

    Taking $$\log$$ both sides, we have

    $$y \log{x} = \left( x - y \right) \log{e}$$

    $$y \log{x} = x - y ..... \left( 1 \right)$$

    At $$x = 1 \Rightarrow y = 1$$

    Differentiating equation $$\left( 1 \right)$$ w.r.t. $$x$$, we have

    $$\cfrac{dy}{dx} \log{x} + \cfrac{y}{x} = 1 - \cfrac{dy}{dx}$$

    $$\Rightarrow \left( 1 + \log{x} \right) \cfrac{dy}{dx} = 1 - \cfrac{y}{x}$$

    $$\Rightarrow \cfrac{dy}{dx} = \cfrac{x - y}{x \left( 1 + \log{x} \right)}$$

    At $$x = 1, \; y = 1$$

    $$\cfrac{dy}{dx} = 0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now