Self Studies

Tangents and its Equations Test 50

Result Self Studies

Tangents and its Equations Test 50
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The normal curve $$xy = 4$$ at the point $$(1, 4)$$ meets the curve again at
    Solution
    Differentiating the equation of the curve with respect to x, we get 
    $$y+xy'=0$$
    Or 
    $$y'=\dfrac{-y}{x}$$

    $$=\dfrac{-4}{x^{2}}$$

    $$y'_{x=1}=-4$$
    Hence slope of normal is 
    $$=\dfrac{1}{4}$$.
    Hence equation of normal will be 
    $$y-4=\dfrac{1}{4}(x-1)$$
    Or 
    $$4y-16=x-1$$
    Or 
    $$4y-x=15$$ ...(i)
    $$xy=4$$ ...(ii)
    Solving the above two equations
    $$4y-\dfrac{4}{y}=15$$
    Or 
    $$4y^{2}-4=15y$$
    $$4y^{2}-15y-4=0$$
    $$y=4$$ and $$y=\dfrac{-1}{4}$$
    Hence
    $$y=\dfrac{-1}{4}$$.
    Thus $$x=\dfrac{4}{y}=-16$$.
    Hence the required point is 
    $$(-16,\dfrac{-1}{4})$$.
  • Question 2
    1 / -0
    The tangent to the curve $$y={e}^{x}$$ drawn at the point $$\left(c,{e}^{c}\right)$$ intersects the line joining the points $$\left(c-1,{e}^{c-1}\right)$$ and $$\left(c+1,{e}^{c+1}\right)$$
    Solution

    The equation of tangent to the curve $$y={e}^{x}$$ at $$\left(c.{e}^{c}\right)$$ is $$y-{e}^{c}={e}^{c}\left(x-c\right)$$   ...(1)
    and the equation of line joining $$\left(c-1,{e}^{c-1}\right)$$ and $$\left(c+1,{e}^{c+1}\right)$$ is
    $$\displaystyle y-{ e }^{ c-1 }=\dfrac { { e }^{ c+1 }-{ e }^{ c-1 } }{ \left( c+1 \right) -\left( c-1 \right)  } \left( x-\left( x-1 \right)  \right) $$
    $$\displaystyle \Rightarrow y-{ e }^{ c-1 }=\dfrac { { e }^{ c }\left( e-{ e }^{ -1 } \right)  }{ 2 } \left( x-\left( c+1 \right)  \right) $$   ...(2)
    Subtracting equation (1) and (2), we get
    $$\displaystyle { e }^{ c }-{ e }^{ c-1 }={ e }^{ c }\left( x-c \right) \left[ \dfrac { e-{ e }^{ -1 }-2 }{ 2 }  \right] +{ e }^{ c }\left( \dfrac { e-e^{ -1 } }{ 2 }  \right) $$
    $$\displaystyle \Rightarrow x-c=\dfrac { \left[ 1-{ e }^{ -1 }-\left( \dfrac { e-{ e }^{ -1 } }{ 2 }  \right)  \right]  }{ \dfrac { e-{ e }^{ -1 }-2 }{ 2 }  } =\dfrac { 2-e-{ e }^{ -1 } }{ e-{ e }^{ -1 }-2 } $$
    $$\displaystyle =\dfrac { e+{ e }^{ -1 }-2 }{ 2\left( e-{ e }^{ -1 } \right)  } =\dfrac { \dfrac { e+{ e }^{ -1 } }{ 2 } -1 }{ 1-\dfrac { e-{ e }^{ -1 } }{ 2 }  } =\dfrac { +ve }{ -ve } =-ve$$
    $$\Rightarrow x-c<0\Rightarrow x<c$$
    $$\therefore$$ the two lines meet on the left of line $$x=c$$
  • Question 3
    1 / -0
    The point (s) on the curve $$\displaystyle y^{3}+3x^{2}= 12y,$$ where the tangent is vertical (i.e., parallel to the y-axis),  is / true
    Solution
    We require the point where $$\dfrac{dx}{dy}=0$$
    Or 
    $$3y^{2}.dy+6x.dx=12dy$$
    Or 
    $$dy(3y^{2}-12)=-6xdx$$
    Or 
    $$\dfrac{-dx}{dy}=\dfrac{3y^{2}-12}{6}$$
    $$=0$$
    Hence
    $$3y^{2}-12=0$$
    $$y^{2}-4=0$$
    $$y=\pm 2$$
    Now $$y=-2$$ does not satisfy the equation the curve.
    Substituting in the equation of the curve, y=2,
    $$8+3x^{2}=24$$
    $$3x^{2}=16$$
    $$x=\pm\dfrac{4}{\sqrt{3}}$$.
  • Question 4
    1 / -0
    Find the equations of tangents to the curve y=x$$^{4}$$ which are drawn from the point $$(2,0)$$
    Solution
    Given, $$y=x^4$$
    $$\therefore \dfrac{dy}{dx}=4x^{3}$$.
    Now equation of the tangent through $$(2,0)$$.
    $$\dfrac{y}{x-2}=4x^{3}$$
    $$y=4x^{3}(x-2)$$
    $$y=4x^{4}-8x^{3}$$
    $$x^{4}=4x^{4}-8x^{3}$$
    $$3x^{4}-8x^{3}=0$$
    $$x^{3}[3x-8]=0$$
    $$x=0$$  and $$x=\dfrac{8}{3}$$.
    If $$x=0$$ then $$y=0$$.
    $$\dfrac{y-0}{x-2}=\dfrac{y-0}{x-0}$$
    $$xy=xy-2y$$
    $$-2y=0$$
    $$\therefore y=0$$ ... (x-axis).
    Now considering $$x=\dfrac{8}{3}$$ we get 
    $$y=\dfrac{4096}{81}$$
    Hence
    $$\dfrac{y-0}{x-2}=\dfrac{y-\dfrac{4096}{81}}{x-\dfrac{8}{3}}$$

    $$xy-\dfrac{8y}{3}=xy-\dfrac{4096x}{81}-2y+\dfrac{8192}{81}$$

    $$-\dfrac{8y}{3}+2y=-\dfrac{4096x}{81}+\dfrac{8192}{81}$$

    $$\dfrac{2y}{3}=-\dfrac{4096x}{81}+\dfrac{8192}{81}$$
  • Question 5
    1 / -0
    A figure is bounded by the curve $$\displaystyle y=x^{2}+1,$$ the axes of co-ordinates and the line x=1. Determine the co-ordinates of a point P at which a tangent be drawn to the curve so as to cut off a trapezium of greatest area from the figure.
    Solution
    The given equation $$\displaystyle x^{2}=y-1 $$ represents a parabola with vertex at $$(0,1)$$
    Let the co-ordinates of any point p on the curve $$\displaystyle y=1+x^{2}be\left ( h,1+h^{2} \right ).$$
     Now $$\displaystyle \dfrac{dy}{dx}=2x=2h $$ Tangent at P is $$\displaystyle y-\left ( 1+h^{2} \right )=2h\left ( x-h \right )$$ or $$\displaystyle y-2xh=1-h^{2}$$ 
    Substituting $$x=0$$ , we get $$\displaystyle y=\left ( 1-h^{2} \right )OL $$ 
    Substituting $$x=1$$, we get $$\displaystyle y=1+2h-h^{2}$$ 
    $$\displaystyle \therefore M is \left ( 1,1+2h-h^{2} \right ),N\left ( 1,0 \right )$$
    A=area of trapezium $$\displaystyle =\dfrac{1}{2}\left ( OL+MN \right ).ON$$ $$\displaystyle =\dfrac{1}{2}\left [ 1-h^{2}+12h-h^{2} \right ].1$$ 
    $$\displaystyle A=(1+h-h^{2})$$ 
    $$\displaystyle \therefore \dfrac{dA}{dh}=1-2h=0$$
    $$ \therefore h=\dfrac{1}{2}$$ and $$\displaystyle \dfrac{d^{2}A}{dh^{2}}=-2=-ive $$ Hence max. 
    $$\displaystyle \therefore $$ Point P is $$\displaystyle \left ( \dfrac{1}{2}.\dfrac{5}{4} \right ).$$ 

    Ans: B
  • Question 6
    1 / -0
    At which point the tangent to $$\displaystyle x^{3}= ay^{2}$$ at $$\displaystyle \left ( 4am^{2},8am^{3} \right )$$ cuts the curve again.
    Solution

  • Question 7
    1 / -0
    Let the equation of a curve be $$x=a\left ( \theta +\sin \theta  \right )$$, $$y=a\left ( 1-\cos \theta  \right )$$. If $$\theta $$ changes at a constant rate $$k$$ then the rate of change of slope of the tangent to the curve at $$\displaystyle \theta =\frac{\pi }{2}$$ is
    Solution
    As $$\theta $$ change with constant rate $$\Rightarrow \dfrac{d\theta}{dt}=k$$
    $$x=a\left( \theta +sin\theta  \right) $$
    $$\cfrac { dx }{ d\theta  } =a\left( 1+cos\theta  \right) $$
    $$y=a\left( 1-cos\theta  \right) $$
    $$\cfrac { dy }{ d\theta  } =asin\theta $$

    Then, $$\cfrac { dy }{ dx } =\cfrac { asin\theta  }{ a\left( 1+cos\theta  \right)  } $$
    Rate of change of slope $$=\dfrac{d}{dt}. \dfrac{dy}{dx} = \dfrac{1}{1+\cos\theta}.\dfrac{d\theta}{dt} = k $$ , at $$\theta =\dfrac{\pi}{2}$$
  • Question 8
    1 / -0

    Directions For Questions

    The number of points of intersection of the graphs of the functions $$y=f\left ( x \right )$$ and $$y=\phi \left ( x \right )$$ give the number of solutions of the equation $$f\left ( x \right )-\phi \left ( x \right )=0$$. Let $$f\left ( x \right )=ke^x$$ and $$\phi \left ( x \right )=x$$, where k is a real constant.

    ...view full instructions

    The positive value of $$k$$ for which $$ke^x-x=0$$ has only one real solution is 
    Solution
    $$ke^{ x }-x=0$$ will have only one solution when $$g(x)=x$$ is tangent to $$f(x)=ke^{x}$$
    let $$P(a,b)$$ be a point on $$f(x)$$ and it also satisfy $$g(x)$$
    Therefore, $$ke^{ a }=a$$       ...(1)
    slope of $$g(x)=$$slope of $$f(x)$$ at point P
    $$\Rightarrow 1=\dfrac { dy }{ dx } $$at point P$$=k{ e }^{ a }$$
    From (1), we get $$a=1$$
    Therefore, $$k=1/e$$

    Ans: A
  • Question 9
    1 / -0
    Find the co-ordinates of the point (s) on the curve $$\displaystyle y= \frac{x^{2}-1}{x^{2}+1}, x> 0$$ such that tangent at these point (s)have the greatest slope.
    Solution
    $$\displaystyle y= \dfrac{x^{2}-1}{x^{2}+1}= \dfrac{x^{2}+1-2}{x^{2}+1}= 1-\dfrac{2}{x^{2}+1}$$

    $$\Rightarrow y=1-\dfrac{2}{x^{2}+1}$$

    S=slope $$\displaystyle = \dfrac{dy}{dx}= \dfrac{4x}{\left ( x^{2}+1 \right )^{2}}$$

    For maximum and minimum of S, $$\displaystyle \dfrac{dS}{dx}= 0$$

    $$\displaystyle \dfrac{dS}{dx}= 4\dfrac{\left ( x^{2}+1 \right )^{2}.1-x.2\left ( x^{2}+1 \right ).2x}{\left ( x^{2}+1 \right )^{4}}$$

    $$\displaystyle \dfrac{dS}{dx}= 4\dfrac{x^{2}+1-4x^{2}}{\left ( x^{2}+1 \right )^{3}}$$

    or $$\displaystyle \dfrac{dS}{dx}= 4\dfrac{1-3x^{2}}{\left ( 1+x^{2} \right )^{3}}=0$$

    $$\displaystyle \therefore x= \dfrac{1}{\sqrt{3}}, -\dfrac{1}{\sqrt{3}}$$

    Now consider change of sign at $$\displaystyle x= \dfrac{1}{\sqrt{3}}, \dfrac{dS}{dx}$$ changes from +ve to -ve.
    Hence S has maximum at $$\displaystyle x= \dfrac{1}{\sqrt{3}}$$. 
    When $$\displaystyle x= \dfrac{1}{\sqrt{3}}$$ the value of $$\displaystyle y= -\dfrac{1}{2}$$
    Hence the point is $$\displaystyle \left ( \dfrac{1}{\sqrt{3}},-\dfrac{1}{\sqrt{2}} \right ).$$
  • Question 10
    1 / -0
    The point of intersection of the tangents drawn to the curve $$\displaystyle x^{2}y= 1-y$$ at the point where it is intersected by the curve xy$$=1-y,$$ is given by
    Solution
    $$point\quad of\quad intersection\quad of\quad tangents$$
    $$to\quad the\quad curve\quad will\quad be\quad the\quad intersection\quad point\quad of\quad curves.\\ xy=1-y\\ y=\dfrac { 1 }{ 1+x } \\ another\quad curve\quad { x }^{ 2 }y=1-y\\ { x }^{ 2 }.\dfrac { 1 }{ 1+x } =1-\dfrac { 1 }{ 1+x } \\ \dfrac { { x }^{ 2 } }{ 1+x } =\dfrac { x }{ 1+x } \\ x=0\quad so\quad y=1.$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now