Self Studies

Tangents and its Equations Test 52

Result Self Studies

Tangents and its Equations Test 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The coordinates of the points(s) at which the tangents to the curve $$\displaystyle y=x^{3}-3x^{2}-7x+6$$ cut the positive semi axis OX a line segment half that on the negative semi axis OY is/are given by
    Solution
    Let the point of tangency be
    $$(x_{1}+y_{1})$$
    Then the equation of tangent is
    $$\dfrac{y-y_{1}}{x-x_{1}}=3x_{1}^{2}-6x_{1}-7$$
    when
    $$y=0,x=x_{1}+\dfrac{-y}{3x_{1}-6x_{1}-7}$$
    when
    $$x=0,y=y_{1}-x_{1}(3x_{1}-6x_{1}-7)$$
    $$-2(x_{1}+\dfrac{-y}{3x_{1}-6x_{1}-7})=y_{1}-x_{1}(3x_{1}-6x_{1}-7)$$
    $$-2(\dfrac{x_{1}(3x_{1}-6x_{1}-7)-y_{1}}{3x_{1}-6x_{1}-7})=y_{1}-x_{1}(3x_{1}-6x_{1}-7)$$
    $$2=3x_{1}-6x_{1}-7$$
    $$3x_{1}-6x_{1}-9=0$$
    $$x_{1}=-1 or 3$$
    when
    $$x_{1}=-1,y_{1}=(-1)^{3}-3(-1)^{2}-7(-1)+6=9$$
    and the y-intercept is
    $$9-(-1)[3(-1)^{2}-6(-1)-7]=11> 0$$
    when
    $$x_{1}=3,y_{1}=(3)^{3}-3(3)^{2}-7(3)+6=-15$$
    and the y-intercept is
    $$-15-(3)[3(3)^{2}-6(3)-7]=-21< 0$$
    So,the point of tangency is $$(-1,9)$$, this is the correct answer.
  • Question 2
    1 / -0
    The tangent to the curve $$y=e^{x}$$ drawn at the point $$\left ( c,e^{c} \right )$$ intersects the line joining the points $$(c -1,e^{c-1})$$ and $$(c +1,e^{c+1}) $$
    Solution
    Given equation of curve 
    $$y=e^x$$
    $$\dfrac{dy}{dx}=e^x$$
    Slope of tangent at point $$(c,e^c)$$ is $$e^c$$
    Equation of tangent at $$(c,e^{c})$$ is 
    $$y-e^{c}=e^{c}(x-c)$$        ....(1)

    Equation of straight line joining $$A\left ( c+1,e^{c+1} \right )$$ and $$B\left ( c-1,e^{c-1} \right )$$ is

    $$\displaystyle y-e^{c+1}=\dfrac{e^{c+1}-e^{c-1}}{2}\left ( x-c-1 \right )$$       .....(2)

    Subtracting (2) from (1), we get
    $$\displaystyle e^{c}\left ( e-1 \right )=e^{c}\left [ \left ( x-c \right )-\dfrac{1}{2} \left ( e-e^{-1} \right )\left ( x-c \right )+\dfrac{1}{2}\left ( e-e^{-1} \right )\right ]$$

    $$\displaystyle \Rightarrow \dfrac{1}{2}\left ( e+e^{-1} \right )-1=\left ( x-c \right )\left [ 1-\dfrac{1}{2}\left ( e-e^{-1} \right ) \right ]$$

    $$\displaystyle \Rightarrow x-c=\dfrac{e+e^{-1}-2}{2-e+e^{-1}}< 0$$

    $$[ \because e+e^{-1}>2$$ and $$2+e^{-1}-e<0 ]$$
    $$\Rightarrow x<c$$
    Thus the two lines meet to the left of $$x = c$$.

  • Question 3
    1 / -0
    For the curve $${x}^{2}+4xy+8{y}^{2}=64$$ the tangents are parallel to the $$x$$-axis only at the points
    Solution
    Given curve is $${x}^{2}+4xy+8{y}^{2}=64.....(i)$$
    On differentiating w.r.t $$x$$ ,we get
    $$2x+4(y+x\cfrac{dy}{dx})+16y\cfrac{dy}{dx}=0$$
    $$\Rightarrow$$ $$2x+4y+(4x+16y)\cfrac{dy}{dx}=0$$
    $$\Rightarrow$$ $$\cfrac{dy}{dx}=-\cfrac{(x+2y)}{2(x+4y)}$$
    Since, tangent are parallel to $$x$$-axis only
    ie., $$\cfrac{dy}{dx}=0$$
    $$\Rightarrow$$ $$-\cfrac{(x+2y)}{2(x+4y)}=0$$ 
    $$\Rightarrow$$ $$x+2y=0.....(ii)$$
    Now, on putting the values of $$x$$ from eqs. $$(i)$$ in $$(ii)$$ we get
    $$4{y}^{2}-8{y}^{2}+8{y}^{2}=64$$
    $$\Rightarrow$$ $${y}^{2}=16$$
    $$\Rightarrow$$ $$y=\pm 4$$
    from eq. $$(ii)$$
    When $$y=4,x=-8$$
    and when $$y=-4, x=8$$
    Hence, required points are $$(-8,4)$$ and $$(8,-4)$$
  • Question 4
    1 / -0
    The equation of the normal to the curve $$y(1+{x}^{2})=2-x$$ where the tangent crosses $$x$$-axis is 
    Solution
    Given curve can be written as, $$y=\dfrac{2-x}{1+x^2}$$

    To get the point where the above curve will cross the x-axis, put $$y=0$$

    $$\Rightarrow  0=\dfrac{2-x}{1+x^2}\Rightarrow x=2$$

    Thus the required point is $$(2,0)$$

    Now differentiate the given curve using quotient rule,
    $$\dfrac{dy}{dx}=\dfrac{(1+x^2)(-1)-(2-x)(2x)}{(1+x^2)^2}$$

    $$\quad =\dfrac{x^2-4x-1}{(1+x^2)^2}$$

    Thus the slope of a tangent to this curve at point $$(2,0)$$ is 

    $$m=\dfrac{dy}{dx}\bigg|_{(2,0)}=\dfrac{2^2-4(2)-1}{(1+2^2)^2}=-\dfrac{5}{25}=-\dfrac{1}{5}$$

    Therefore the slope of normal at this point will be $$5$$

    Hence required equation of normal is given by, $$(y-0)=5(x-2)$$
    $$\Rightarrow 5x-y-10=0$$
  • Question 5
    1 / -0
    If $$y = 4x - 5$$ is a tangent to the curve $$y^{2} = px^{3} + q$$ at $$(2, 3)$$, then
    Solution
    Since, $$(2, 3)$$ lies on the curve $$y^{2} = px^{3} + q$$
    Therefore, $$9 = 8p + q ..... (i)$$
    $$y^{2} = px^{3} + q$$
    $$\Rightarrow 2y \dfrac {dy}{dx} = 3px^{2}$$
    $$\dfrac {dy}{dx} = \dfrac {3px^{2}}{2y}$$
    $$\Rightarrow \left (\dfrac {dy}{dx}\right )_{(2, 3)} = \dfrac {12p}{6} = 2p$$
    Since, $$y = 4x - 5$$ is tangent to $$y^{2} = px^{3} + q$$ at $$(2, 3)$$. Therefore,
    $$\therefore \left (\dfrac {dy}{dx}\right )_{(2, 3)} =$$ Slope of the line $$y = 4x - 5$$
    $$\Rightarrow 2p = 4 \Rightarrow p = 2$$
    Putting $$p = 2$$ in Eq. (i), we get $$q = -7$$.
  • Question 6
    1 / -0
    The curve given by $$x+y={ e }^{ xy }$$ has a tangent parallel to the y-axis at the point
    Solution
    Given curve is $$x+y={ e }^{ xy }\quad $$
    On differentiating w.r.t $$x$$ we get
    $$1+\cfrac { dy }{ dx } ={ e }^{ xy }\left\{ y+x\cfrac { dy }{ dx }  \right\} $$
    $$\Rightarrow \cfrac { dy }{ dx } =\cfrac { y{ e }^{ xy }-1 }{ 1-x{ e }^{ xy } } $$
    Since, tangent is parallel to y-axis
    Here, $$\cfrac { dy }{ dx } =\infty \Rightarrow 1-x{ e }^{ xy }=0$$
    $$\Rightarrow 1-x(x+y)=0$$
    This holds for $$x=1,y=0$$ 
  • Question 7
    1 / -0
    The sum of intercepts of the tangent to the curve $$\sqrt { x } +\sqrt { y } =\sqrt { a } $$ upon the coordinates axes is
    Solution
    Let $$\sqrt { x } +\sqrt { y } =\sqrt { a } $$
    diff. curt.
    $$\cfrac { 1 }{ 2\sqrt { x }  } +\cfrac { 1 }{ 2\sqrt { y }  } .\cfrac { dx }{ dy } =0$$
    $$\cfrac { dx }{ dy } =-\sqrt { \cfrac { y }{ x }  } $$ (slope of tangent)
    To find points,
    Let $${ x }^{ \circ  }=c$$
          $${ y }^{ \circ  }={ (\sqrt { a } -\sqrt { c } ) }^{ 2 }$$
    So, equation of tangent ,
    $$\cfrac { y-{ (\sqrt { a } -\sqrt { c } ) }^{ 2 } }{ x-c } =-\sqrt { \cfrac { y }{ x }  } \left( =\cfrac { \sqrt { c } -\sqrt { a }  }{ \sqrt { c }  }  \right) \quad \longrightarrow (1)$$
    Intercept of x,
    put $$y=0$$
    $$x=\sqrt { ac } \quad \longrightarrow (2)$$
    For intercept of y,
    put $$x=0$$ in equation(1)
    We get, $$y=a-\sqrt { ac } \quad \longrightarrow (3)$$
    Sum of both (2)+(3)
    $$a-\sqrt { a } c+\sqrt { a } c$$
    $$\Rightarrow a$$

  • Question 8
    1 / -0
    Suppose that the equation $$f(x)={x}^{2}+bx+c=0$$ has two distinct real roots $$\alpha,\beta$$. The angle between the tangent to the curve $$y=f(x)$$ at the point $$\left( \cfrac { \alpha +\beta  }{ 2 } ,f\left( \cfrac { \alpha +\beta  }{ 2 }  \right)  \right) $$ and the positive direction of the x-axis is
    Solution
    $$f\left( x \right) ={ x }^{ 2 }+bx+c$$
    Slope of $$y=f\left( x \right) $$
    $$\cfrac { dy }{ dx } =2x+b$$
    $${ \left( \cfrac { dy }{ dx }  \right)  }_{ \cfrac { \alpha +\beta  }{ 2 } ,f\left( \cfrac { \alpha +\beta  }{ 2 }  \right)  }=2\times \cfrac { \alpha +\beta  }{ 2 } +b$$
    from $$f\left( x \right) ={ x }^{ 2 }+bx+c$$ we know $$\alpha +\beta =-b$$
    $$\therefore \left( \cfrac { dy }{ dx }  \right) =-b+b=0\quad \left[ \tan { 0° } =0=\cfrac { dy }{ dx }  \right] $$
    Thus, angle between tangent and x-axis$$=0°$$
  • Question 9
    1 / -0
    If the slope of the curve $$y=\cfrac { ax }{ b-x } $$ at the point $$(1,1)$$ is $$2$$, then the values of $$a$$ and $$b$$ are respectively
    Solution
    $$y=\cfrac { ax }{ b-x } $$
    Slope= $$\cfrac { dy }{ dx } $$
    So,$$\cfrac { dy }{ dx } $$= $$\cfrac { a(b-x)-(-1)(ax) }{ { (b-1) }^{ 2 } } \quad \longrightarrow (1)$$
    for $$(1,1)$$
    put in equation of curve-
    $$1=\cfrac { a }{ (b-1) } \quad \Rightarrow (b-1)=a\quad \longrightarrow (2)$$
    From slop after putting (1,1)
    We get,
    $$\\ 2=\cfrac { a(b-1)+a }{ { (b-1) }^{ 2 } } $$
    put $$(b-1)=a$$ from equation(2)
    $$2=\cfrac { { a }^{ 2 }+a }{ { a }^{ 2 } } \quad \quad \\ \Rightarrow 2{ a }^{ 2 }={ a }^{ 2 }+a\\ \quad \Rightarrow a(a-1)=0\\ \quad \Rightarrow a=0,1$$
    put in (2),
    We get 
    $$b=1,2$$
    In option only one value is given
    $$\therefore a=1,b=2$$

  • Question 10
    1 / -0
    The two curves $$x^{3} - 3xy^{2} + 2 = 0$$ and $$3x^{2} y - y^{3} = 2$$
    Solution
    Consider the equation $$x^3-3xy^2+2=0$$ and differentiate it with respect to $$x$$:

    $$3x^{ 2 }-3y^{ 2 }-6xy\frac { dy }{ dx } =0\\ \Rightarrow 6xy\dfrac { dy }{ dx } =3x^{ 2 }-3y^{ 2 }\\ \Rightarrow \dfrac { dy }{ dx } =\dfrac { 3x^{ 2 }-3y^{ 2 } }{ 6xy } \\ \Rightarrow \dfrac { dy }{ dx } =\frac { x^{ 2 }-y^{ 2 } }{ 2xy } \quad .....(1)$$

    Now, consider the equation $$3x^2y-y^3-2=0$$ and differentiate it with respect to $$x$$:

    $$6xy+3x^{ 2 }\dfrac { dy }{ dx } -3y^{ 2 }\dfrac { dy }{ dx } =0\\ \Rightarrow 6xy+\dfrac { dy }{ dx } (3x^{ 2 }-3y^{ 2 })=0\\ \Rightarrow \dfrac { dy }{ dx } =\dfrac { -6xy }{ 3x^{ 2 }-3y^{ 2 } } \\ \Rightarrow \dfrac { dy }{ dx } =\dfrac { -2xy }{ x^{ 2 }-y^{ 2 } } \quad .....(2)$$

    Multiply 1 and 2 as follows:

    $$\left( \dfrac { x^{ 2 }-y^{ 2 } }{ 2xy }  \right) \left( \dfrac { -2xy }{ x^{ 2 }-y^{ 2 } }  \right) =-1$$

    In general, if the product of two slopes is equal to $$-1$$ then the lines are perpendicular, therefore, the two given curves are perpendicular to each other.

    Hence, the two curves $$x^3-3xy^2+2=0$$ and $$3x^2y-y^3-2=0$$ cut each other at right angle.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now