Self Studies

Tangents and its Equations Test 6

Result Self Studies

Tangents and its Equations Test 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The gradient of the tangent line at the point $$(a cos \alpha, a sin \alpha)$$ to the circle $$x^2 + y^2 = a^2$$, is
    Solution
    Equation of the circle, $$x^2+y^2=a^2$$

    At a point $$(a \cos \alpha, a \ sin \alpha)$$

    Gradient of radius $$= \dfrac{y_2-y_1}{x_2-x_1}$$

    $$= \dfrac{a \ sin \alpha-0}{a \ cos \alpha-0}$$

    $$=\ tan \alpha $$

    gradient of radius $$\times$$ gradient of tangent = -1

    $$\ tan \alpha \times$$ gradient of tangent = -1

    $$\Rightarrow $$gradient of tangent$$ = -\ tan \alpha $$

    $$\Rightarrow $$gradient of tangent$$ = \ tan (\pi - \alpha)$$


  • Question 2
    1 / -0
    If the product of the slope of tangent to curve at $$(x,y)$$ and its y-co-ordinate is equal to the x-co-ordinate of the point, then it represent.
    Solution
    Let slope of a tangent at point $$(x,y)$$ to the curve is $$=\cfrac { dy }{ dx } $$
    $$\therefore y\cfrac { dy }{ dx } =x$$ (given)
    $$\therefore ydy=xdx\quad $$
    Integrating both side $$\int { y } dy=\int { x } dx$$
    $$\therefore \cfrac { { y }^{ 2 } }{ 2 } =\cfrac { { x }^{ 2 } }{ 2 } +c'$$
    $$\therefore { y }^{ 2 }-{ x }^{ 2 }+2c'$$
    $$\therefore { y }^{ 2 }-{ x }^{ 2 }=c$$
    where $$2c'=c$$
    Which is a rectangular hyperbola
  • Question 3
    1 / -0
    The length of the segment of the tangent line to the curve $$x=a\cos ^{ 3 }{ t } ,y=\sin ^{ 3 }{ t } $$, at any point on the curve cut off by the coordinate axes is
  • Question 4
    1 / -0
    Which one of the following be the gradient of the hyperbola $$xy=1$$ at the point $$\left(t,\dfrac{1}{t}\right)$$
    Solution
    Given the hyperbola
    $$xy=1$$.
    Now differentiate both sides with respect to $$x$$ we get,
    $$y+x\dfrac{dy}{dx}=0$$
    or, $$\dfrac{dy}{dx}=-\dfrac{y}{x}$$
    Now the gradient of the given hyperbola at $$\left(t,\dfrac{1}{t}\right)$$ is 
    $$\left.\dfrac{dy}{dx}\right|_{\left(t,\dfrac{1}{t}\right)}=-\dfrac{1}{t^2}$$
  • Question 5
    1 / -0
    Equation of tangent at that point of the curve $$y = 1 - {e^{\frac{x}{2}}}$$, where it meets y-axis  
    Solution

    Given ,

     $$ y=1-{{e}^{\frac{x}{2}}} $$          ……(1)


    Differentiate w.r. t x both side we get

      $$ \dfrac{dy}{dx}=-{{e}^{\frac{x}{2}}}\times \dfrac{1}{2} $$         …..(2)


    Given that graph of equation $$(1)$$ meets y-axis

    $$\Rightarrow x=0$$ 

    Put in equation $$(1),$$ we get

    $$ y=1-{{e}^{\frac{0}{2}}} $$

    $$ y=1-{{e}^{0}} $$

    $$ y=1-1 $$

    $$ y=0 $$


    Put $$y=0$$ in equation $$(1)$$ we get

    $$x=0$$

     

    Now, put the value of $$x,y$$ in equation $$(2),$$ we get

     $$ {{\left( \dfrac{dy}{dx} \right)}_{\left( 0,0 \right)}}=-{{e}^{\dfrac{0}{2}}}\times \dfrac{1}{2}=-1\times \dfrac{1}{2}=-\dfrac{1}{2} $$


    Now required equation is

      $$ y-{{y}_{1}}=\dfrac{dy}{dx}\left( x-{{x}_{1}} \right) $$

     $$ y-0=-\dfrac{1}{2}\left( x-0 \right) $$

     $$ y=-\dfrac{1}{2}x $$

     $$ 2y+x=0 $$

    This is the required equation of tangent.

  • Question 6
    1 / -0
    The slope of the tangent to the curve $$xy+ax-by=0$$ at the point $$(1,1)$$ is $$2$$, then value of $$a$$ and $$b$$ are respectively:
    Solution
    $$xy+ax-by=0$$
    $$(1,1)$$ lies on curve
    $$1+a-b=0$$ 
    $$a-b=-1$$ ....... $$(i)$$
    $$y+x\dfrac { dy }{ dx } +a-b\dfrac { dy }{ dx } =0$$ 
    $$1+2+a-2b=0$$ 
    $$a-2b=-3$$ ........ $$(ii)$$
    Solving $$(i)$$ and $$(ii)$$, we get
    $$a=1,b=2$$
  • Question 7
    1 / -0
    The Equation of the tangent to the curves $${y^2} = 8x$$ and $$xy = -1$$ is
    Solution
    Any tangent to $${y^2} = 8x$$ is 
    $$y = mx + \dfrac{2}{m}$${equation of tangent of parabola}
    it should also be tangent to $$xy=-1$$
    so $$x\left( {mx + \dfrac{2}{m}} \right) =  - 1$$ 
    $$m^2x^2+2x+m=0$$
    $$\therefore D=0 $$
    $$4-4m^3=0$$
    $$\therefore m=1$$
    so tangent $$y = mx + \dfrac{2}{m}$$
    $$ \Rightarrow y = x + 2$$
  • Question 8
    1 / -0
    If the tangent to the curve $$y=x\log { x } $$ at $$\left( c,f\left( x \right)  \right) $$ is parallel to the line-segment joining $$A\left(1,0\right)$$ and $$B\left(e,e\right)$$, then c=...... .
    Solution
    slope of AB $$\displaystyle =\frac{e}{e-1}$$
    $$\displaystyle \frac{dy}{dx}=1+\log x$$
    slope at $$(c,f\left(x\right ))$$
    $$\displaystyle 1+\log c=\frac{e}{e-1}\implies=e^{\frac{1}{e-1}}$$
  • Question 9
    1 / -0
    The values of $$x$$ for which the tangents to the curves $$y=x\cos{x},y=\cfrac{\sin{x}}{x}$$ are parallel to the axis of $$x$$ are roots of  (respectively)
    Solution
    $$y=x\cos x$$

    $$\dfrac{dy}{dx}=\cos x-x\sin x=0$$

    $$\implies x=\cot x$$

    $$y=\dfrac{\sin x}{x}$$

    $$\dfrac{dy}{dx}=\dfrac{x\cos x-\sin x}{x^{2}}=0$$

    $$\implies x=\tan x$$
  • Question 10
    1 / -0
    A curve with equation of the form $$y=a{x}^{4}+b{x}^{3}+cx+d$$ has zero gradient at the point $$(0,1)$$ and also touches the x-axis at the point $$(-1,0)$$ then
    Solution
    given $$y=ax^4+bx^3+cx+d$$
    $$y_{}{'}=4ax^3+3bx^2+c=0$$ at (0,1)
    so $$c=0$$
    curve passes through point (-1,0)
    so $$0=a-b-c+d=>a+d=b$$
    here $$y_{}{'}<0$$ for $$x<-1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now