Let the value of the machine, at the onset, be $$x$$ when $$x$$ is in Rs.
Here we shall apply the rule
Final value $$=$$ original value $$\times { \left( 1+rate \right) }^{ time }$$.
Here the rate will be negative since the value is depriciating.
For two yrs. the rate of depriciation is $$10\%$$.
$$\therefore $$ the value after $$2$$ yrs.
$$=$$ $$x\times { \left( 1-\dfrac { 10 }{ 100 } \right) }^{ 2 }=x\times \dfrac { 9 }{ 10 } \times \dfrac { 9 }{ 10 } $$.
As given, the rate of depriciation for next $$2$$ yrs $$=5\%$$
$$\therefore $$ The value after next $$2$$ yrs
$$=$$ $$x\times \dfrac { 9 }{ 10 } \times \dfrac { 9 }{ 10 } \times { \left( 1-\dfrac { 5 }{ 100 } \right) }^{ 2 }$$
$$ =x\times \dfrac { 9 }{ 10 } \times \dfrac { 9 }{ 10 } \times \dfrac { 19 }{ 20 } \times \dfrac { 19 }{ 20 } $$
But the final value after $$4$$ yrs $$=$$ Rs. $$146205$$.
$$\therefore \quad x\times \dfrac { 9 }{ 10 } \times \dfrac { 9 }{ 10 } \times \dfrac { 19 }{ 20 } \times \dfrac { 19 }{ 20 } =146205$$
$$ \Rightarrow x=\dfrac { 146205\times 40000 }{ 81\times 19\times 19 } =5\times 40000$$
$$\Rightarrow x=$$ Rs. $$200000$$.
So, $$4$$ yrs. back, the value of the machine was Rs. $$200000$$.