Self Studies

Basics of Financial Mathematics Test 8

Result Self Studies

Basics of Financial Mathematics Test 8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What is the principal amount which earns Rs. 1320 as compound interest for the second year at 10% per annum?
    Solution
    Let the principal at the end of first year be Rs. $$x$$.
    Then $$\cfrac{x\times 10\times 1}{100} = 1320$$
    or $$x = 13200$$
    Now, let the original principal be Rs. P.
    Then, the amount after 1 year $$= P+\cfrac{P\times 10\times 1}{100} = \cfrac{11P}{10}$$
    $$\cfrac{11P}{10} = 13200$$
    or $$P = (\cfrac{13200\times 10}{11}) = Rs. 12000$$
  • Question 2
    1 / -0
    A tree increases annually by one-fourth of its height. What will be it's height after $$2$$ years, if it stands $$64$$ cm high today?
    Solution
    Initial height $$=64\ cm$$
    Every year it increases one-fourth of it's height.
    Increase $$\%= (\cfrac{1}{4}\times 100\%)=25\%$$

    Height after $$2$$ years $$= 64\times \left(1+\cfrac{25}{100}\right)^2\ cm$$
                                      $$= 64\times \left(1+\cfrac{1}{4}\right)^2\ cm$$
                                       $$= 64\times \left(\cfrac{5}{4}\right)^2\ cm$$
                                      $$= (64\times \cfrac{5}{4}\times \cfrac{5}{4})\ cm$$ 
                                      $$= 100\ cm$$ 

    Hence, the height of the tree after $$2$$ years will be $$100\ cm$$
  • Question 3
    1 / -0
    If the simple interest on a sum of money at 5% per annum for 3 years is Rs. 12000, the compound interest on the same sum for the same period at the same rate, is
    Solution
    Clearly, Rate = $$5\; \%$$, Time = $$3$$ years and S.I. = $$\text{Rs.}\;12000$$
    Sum $$= \text{Rs.} \left (\cfrac{100\times 12000}{3\times 5}\right ) = \text{Rs.}\; 80000$$
    Amount $$= \text{Rs. } \left [80000\times \left (1+\cfrac{5}{100}\right )^3\right ]$$
                  $$= \text{Rs. } 92610$$
    We know that C.I. = Amount - Sum
    So,
    C.I. $$ = 92610-80000$$
          $$= \text{Rs. } 12610$$
  • Question 4
    1 / -0
    The current population of a town is 10,000. If the population increases by $$10\%$$ every year, then the  population of the town after three years will be
    Solution
    $$A=P(1+\cfrac{R}{100})^n$$
    $$A=10000(1+0.1)^3=13310$$
  • Question 5
    1 / -0
    If Rs.3,750 amount to Rs.4,620 in 3 years at simple interest, then find the rate of interest.
    Solution
    Simple Interest $$ I = \cfrac {PNR}{100} $$
    Given, 
    Amount  $$A  = Rs.  4620  $$
    $$ P = Rs.  3750  $$
    $$ I = A - P = 870 $$
    $$ N  =  3$$

    So, $$  870 = \cfrac {3750 \times  3  \times R}{100} $$
    $$ => R = 7 \cfrac {11}{15} \%$$ 
  • Question 6
    1 / -0

    A sum of money at simple interest amounts to Rs. 815 in 3 years and to Rs. 854 in 4 years. Find the sum.

    Solution
    $$\textbf{Step 1: Find the simple interest in one year and 3 years.}$$

                  $$\text{Given,}$$
                  $$\text{Sum of money at simple interest amounts to Rs. 815 in 3 years and to Rs. 854 in 4 years.}$$
                  $$\text{So, Amount after 4 years= Amount after 3 years }+\text{ Simple interest in 1 year} $$
                  $$\therefore \text{Simple interest in one year}=854-815$$
                                                                        $$=\text{Rs. } 39$$
                  $$\text{Simple interest for 3 years}=39\times 3$$
                                                                   $$=\text{Rs. }117$$

    $$\textbf{Step 2: Find the principle value.}$$

                  $$\text{Principle}=815-117$$                      $$[\because\textbf{Principle}=\textbf{Amount}-\textbf{Interest}]$$
                                    $$=\text{Rs. }698$$

    $$\textbf{Hence, Option A is correct.}$$
  • Question 7
    1 / -0
    Calculate the compound interest(I) on :
    Rs. $$8,000$$ in $$2\displaystyle \frac{1}{2}$$ years at $$15\%$$ per annum.
    Solution
    $$Amount =8000\times \left(1+\cfrac{15}{100}  \right)^2\left(1+\cfrac{7.5}{100}  \right)$$

    $$\Rightarrow 8000\times \dfrac{115}{100}\times \dfrac{115}{100}\times \dfrac{107.5}{100}$$

    $$\Rightarrow \dfrac{11373500}{1000}\Rightarrow 11373.50  Rs.$$

    $$C.I=11373.50-8000=3373.50  Rs.$$
  • Question 8
    1 / -0
    A man borrows $$Rs.\ 1,200$$ at  rate $$10$$ percent per annum compound interest. If he repays $$Rs.\ 250$$ at the end of each year, find the amount outstanding at the beginning of the fourth year.
    Solution
    $$A=P\left ( 1+\dfrac{R}{100} \right )^{T}$$

    $$A=1200\left ( 1+\dfrac{10}{100} \right )\Rightarrow 1200\times \dfrac{110}{100}\Rightarrow 1320$$
    According to  question, borrower paid $$Rs\ 250$$ per year
    Then borrowed amount for second year is $$Rs.\ 1320-250=Rs.\ 1070$$
    $$A=1070\left ( 1+\dfrac{10}{100} \right )\Rightarrow 1070\times \dfrac{110}{100}\Rightarrow 1177$$
    Then borrowed  amount for third year is $$Rs.\ 1177-250=Rs.\ 927$$
    $$A=927\left ( 1+\dfrac{10}{100} \right )\Rightarrow 927\times \dfrac{110}{100}\Rightarrow Rs.\ 1019.70$$
     Borrowed  amount for fourth year is $$Rs.\ 1019.70-250=Rs.\ 769.70$$

    Hence, option A.
  • Question 9
    1 / -0
    Calculate the amount and the compound interest on :
    Rs. $$3,500$$ at $$10\%$$ per annum in $$2$$ years
    Solution
    $$A=P \left(1+\dfrac{R}{100}  \right)^n$$
    Here, $$P=3500, R=10\%, n=2$$ years
    $$A=3500\left(1+\dfrac{10}{100} \right)^2$$
    $$A=3500\times \dfrac{110}{100}\times \dfrac{110}{100}$$

    $$A=35\times 121=4235  Rs.$$
    $$C.I=A-P=4235-3500=735  Rs.$$
  • Question 10
    1 / -0
    Calculate the amount after five years on $$Rs. \ 10,000$$ invested for $$5$$ years at $$10 \%$$ per annum.
    Solution

    Given P = Rs.$$10000$$, r $$= 10$$%, n $$= 1$$ and nt $$= 5$$ years

    Formula for Amount with compound interest = $$P { \left( 1+\frac { r }{100}  \right)  }^{ nt }$$

    A $$= 10000 { \left( 1+\frac {10}{ 100 }  \right)  }^{ 5}$$

       $$= 10000 { \left( 1.1 \right)  }^{ 5 }$$

       $$= 10000 (1.61051)$$

    A  $$= 16105.1$$

    Ans  Amount after $$5$$ years = Rs. $$16105.1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now