Self Studies

Straight Lines Test 18

Result Self Studies

Straight Lines Test 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Consider the points $$A( a, b + c)$$, $$B(b, c + a)$$, and $$C(c, a +b)$$ be the vertices of $$\bigtriangleup$$ABC. The area of $$\bigtriangleup$$ABC is:
    Solution
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
    Since, vertices are $$A(a, b + c),~ B(b, c + a),$$ and $$ C(c, a + b)$$
    $$\therefore$$ Area $$ \bigtriangleup ABC = \dfrac{1}{2}|a(c + a) -b(b + c) + b(a + b) - c(c + a) +c(b + c) -a(a + b)|=0$$ .
    Hence option 'D' is correct.
  • Question 2
    1 / -0
    $$(3, 1), (-3, 2)$$ and $$\displaystyle (0,2-\sqrt{3})$$ are the vertices of __________ triangle of area ___________.
    Solution

    Distance between two points $$= \sqrt { \left( { x }_{ 2 }-{x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$
    Distance between the points $$A (3,1) $$ and $$B (-3,2) = \sqrt { \left( -3-3 \right) ^{ 2 }+\left( 2 - 1 \right) ^{ 2 } } = \sqrt { 36 + 1 } = \sqrt { 37 }$$

    Distance between the points $$B(-3,2) $$ and $$C (0,2-\sqrt {3}) = \sqrt { \left( 0 + 3 \right) ^{ 2 }+\left(2 - \sqrt {3} - 2\right) ^{ 2 } } = \sqrt { 9 + 3 } = \sqrt { 12 } $$

    Distance between the points $$A(3,1) $$ and $$ C(0,2-\sqrt {3})$$

    $$ = \sqrt { \left( 0-3\right) ^{ 2 }+\left( 2-\sqrt {3} - 1\right) ^{ 2 } } = \sqrt { 9 + 1 + 3 -2\sqrt {3} } = \sqrt { 13 - 2\sqrt {3} } $$

    Since the length of the sides between all vertices are different, they are the vertices of  a scalene triangle. 

    Area of a triangle $$= \left| \cfrac { {x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Area of $$\triangle ABC= \left| \cfrac {  (3)(2-2+\sqrt {3})+(-3)(2-\sqrt {3} - 1)+0(1-2) }{ 2 } \right| $$

    $$ = \left| \cfrac { 3\sqrt {3} -3 + 3\sqrt {3} }{ 2 }  \right| $$

    $$ = \cfrac{-3 + 6 \sqrt {3}}{2}$$ sq. units

  • Question 3
    1 / -0
    Find the area of the triangle formed by joining the midpoints of the sides of the triangle whose vertices are $$(2,2)$$, $$(4,4)$$ and $$(2,6)$$.
    Solution
    Let $$ A(2,2), B(4,4) $$ and $$ C(2,6) $$ be the vertices of a given triangle ABC.

    Let D, E, and F be the midpoints of AB, BC and CA respectively.

    Mid point of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y }_{

    2 }) $$ is  calculated by the formula $$ \left( \dfrac { { x }_{ 1 }+{ x

    }_{ 2 } }{ 2 } ,\dfrac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$

    Using this formula,
    the coordinates of D, E, and F are given as $$\displaystyle  D \left (\frac{2+4}{2},\frac {2+4}{2} \right ), E\left (\frac {4+2}{2},\frac {4+6}{2}\right ) $$ and $$ F\left (\dfrac {2+2}{2},\dfrac {2+6}{2} \right ) $$

    i.e., $$ D(3,3), E(3,5) and F(2,4)  $$

    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y

    }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is $$ \left| \dfrac { {

    x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{

    3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (3,3) $$ ; $$({ x

    }_{ 2 },{ y }_{ 2 }) = (3,5) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (2,4)$$

    in the area formula, we get

    Area of triangle DEF  $$ = \left| \dfrac { 3(5-4)+(3)(4-3)+2(3-5) }{ 2

    }  \right|  = \left| \dfrac { 3 +3 -4 }{ 2 }  \right|  =

    \dfrac {2}{2}  = 1 \ sq \ units $$
  • Question 4
    1 / -0
    The  triangle with vertices A(4, 4), B(-2, -6) and C(4, -1) is shown in the diagram. The area of $$\Delta$$ ABC is _______

    Solution
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$= \cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$

    $$=\dfrac{1}{2}|4(-6-(-1))-2(-1-4)+4(4-(-6))|$$

    $$=\dfrac{1}{2}|4(-5)-2(-5)+4(10)|$$

    $$=\dfrac{1}{2}|30|$$

    $$=15 $$ sq. units

  • Question 5
    1 / -0
    The coordinates of $$A$$ for which area of triangle, whose vertices are $$A(a, 2a),\  B(-2, 6)$$ and $$C(3, 1)$$ is $$10$$ square units, are:

    Solution
    Given: Vertices of the triangle are $$A(a, 2a),\ B(-2, 6),\ C(3,1)$$

    The area of the triangle is $$10$$ square units.

    $$\Rightarrow \dfrac{1}{2}\bigg | a(6-1)+(-2)(1-2a)+3(2a-6) \bigg |=10$$

    $$\Rightarrow 5a-2+4a+6a-18=20$$

    $$\Rightarrow 15a=40$$

    $$\Rightarrow a=\dfrac{40}{15}=\dfrac{8}{3}$$

    $$\therefore $$ The coordinates of vertex $$A $$ are $$\displaystyle  \left ( \dfrac{8}{3}, \frac{16}{3} \right )$$
  • Question 6
    1 / -0
    The number of positive fractions $$\dfrac{m}{n}$$ such that $$\dfrac{1}{3}< \dfrac{m}{n}<1 $$ and having the property that the fraction remains the same by adding some positive integer to the numerator and multiplying the denominator by the same positive integer is:
    Solution
    Given $$m,n$$ are integers $$\dfrac{1}{3}<\dfrac{m}{n}<1$$
    $$\Rightarrow  \dfrac{m+x}{nx}=\dfrac{m}{n}$$
    $$\Rightarrow m+x=mx$$
    $$\Rightarrow x=\dfrac{m}{m-1},$$   $$x$$ must be an integer.
    So only possible value of $$m$$ satisfying above equation is $$2.$$
    $$\Rightarrow  m=2$$
    $$\Rightarrow  \dfrac{m}{n}>\dfrac{1}{3}\Rightarrow 3m>n\Rightarrow 6>n$$

    $$\Rightarrow  \dfrac{m}{n}<1\Rightarrow m<n\Rightarrow 2<n$$
    $$\Rightarrow  n=3,4,5$$
    $$\therefore 3$$ Possible fractions.
    Hence, the answer is $$3.$$
  • Question 7
    1 / -0
    Three points A, B and C have coordinates $$(a, b + c), \ (b, c + a)$$ and $$(c, a + b)$$, respectively. The area of the triangle ABC will be:
    Solution
    Area of triangle $$=\dfrac{ 1 }{ 2 }\left[ { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) \right] $$

    Given the points: $$A(a, b+c) , B(b, c+a) , C(c, a+b)$$
    Therefore, area:

    $$A =\dfrac{ 1 }{ 2 }\left[ a(c+a-a-b)+b(a+b-b-c)+c(b+c-c-a) \right]$$ 

    $$A =\dfrac{ 1 }{ 2}{\left[ a(c-b)+b(a-c)+c(b-a) \right]  }$$

    $$A=\dfrac{ 1 }{ 2}{\left[ ac-ab+ba-bc+cb-ac \right]  }=0$$
  • Question 8
    1 / -0
    In the following question, the numbers/letters are arranged based on some pattern or principle. Choose the correct answer for the term marked by the symbol (?) 
    $$0,\,3,\,9,\,18,\,30,\,?$$
    Solution
    The difference between the consecutive numbers increases by $$3$$.
    $$3-0 = 3$$
    $$9 - 3 = 6$$
    $$18-9 = 9$$
    $$30-18 = 12$$.
    Pattern is adding multiples of 3
    Next term is $$30+15=45$$
  • Question 9
    1 / -0
    In of the following question, the numbers/letters are arranged based on some pattern or principle. Choose the correct answer for the term marked by the symbol (?) Choose the correct answer for the term marked by the symbol (?)

    Solution
    $$\rightarrow 16 \times4=64=8^2$$
    $$\rightarrow 3 \times27=81=9^2$$
    $$\rightarrow 18 \times8=144=12^2$$
  • Question 10
    1 / -0
    In the following question, the numbers/letters are arranged based on some pattern or principle. Choose the correct answer for the term marked by the symbol (?) 
    $$6,\,9,\,18,\,21,\,30,\,?$$
    Solution
    $$6,\,9,\,18,\,21,\,30$$
    Alternate series difference is common
    $$\therefore\;30+3=33$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now