Self Studies

Straight Lines Test 21

Result Self Studies

Straight Lines Test 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If coordinates of P,Q, and R are (3,6),(-1,3) and (2,-1) respectively. Then area of $$\displaystyle \triangle PQR$$ is ____ square units.
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$
    Area of $$\displaystyle \Delta PQR$$ is given by
    $$\displaystyle =\frac{1}{2}\left [ 3\left ( 3+1 \right )-1\left ( -1-6 \right )+2\left ( 6-3 \right ) \right ]$$
    $$\displaystyle =\frac{1}{2}\left ( 12+7+6 \right )=12.5$$ square units.
  • Question 2
    1 / -0
    Area of a triangle whose vertices are (0, 0), (2, 3) , (5, 8) is _______ square units.
    Solution
    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is $$ \left| \frac { { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$


    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (0,0) $$ ; $$({ x }_{ 2 },{ y }_{ 2 }) = (2,3) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (5,8)$$ in the area formula, we get

    Area of triangle ABC  $$ = \left| \frac {  (0)(3-8)+(2)(8-0)+5(0-3) }{ 2 }  \right|  = \left| \frac { 16 -15 }{ 2 }  \right|  = \frac {1}{2} units $$

  • Question 3
    1 / -0
    Image

    Solution
    Suppose, the apple is $$x$$ and the pear is $$y$$
    Given in the question,

    $$2x+y=230 $$     eq—1

    And,
    $$y-x=5$$       eq—2

    So, from —2 
    $$y= 5+x$$        eq—3

    Putting eq—3 in eq—1

    $$2x+5+x=230$$

    $$3x+5=230$$

    $$3x=225$$

    $$x=\dfrac{225}{3}$$

    $$x=75$$

    Now from eq—3 

    $$y=5+75$$

    $$y=80$$

    So the value of a pear is $$80$$

    Hence Option D is the correct answer.
  • Question 4
    1 / -0
    In Hyderabad there are 5 routes to Begumpet from Kukatpally and 9 routes to Dilsukhnagar from Begumpet In how many ways can a person travel from Kukatpally to Dilsukhnagar via Begumpet?
    Solution
    This is an implication of AND principal so multiplication shall be done.
    So, number of ways $$=5\times9$$
                                      $$=45$$
    Hence, the answer is $$45.$$
  • Question 5
    1 / -0
    Area of triangle whose vertices are $$(0, 0), (2, 3), (5, 8)$$ is ____ square units.
    Solution
    Area of the triangle with three vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$ is
    $$A=\dfrac { 1 }{ 2 } \left| { y }_{ 1 }({ x }_{ 2 }-{ x }_{ 3 })+{ y }_{ 2 }({ x }_{ 3 }-{ x }_{ 1 })+{ y }_{ 3 }({ x }_{ 1 }-{ x }_{ 2 }) \right|$$
    Therefore, the area of triangle with vertices $$(1,2)$$, $$(3,4)$$ and $$(5,6)$$ is:
    $$A=\dfrac { 1 }{ 2 } \left| 0(2-5)+3(5-0)+8(0-2) \right| =\dfrac { 1 }{ 2 } \left| 0+15-16 \right| =\dfrac { 1 }{ 2 } \left| -1 \right| =\dfrac { 1 }{ 2 }$$       
    Hence, the area of the triangle is $$\dfrac { 1 }{ 2 }$$ square units.
  • Question 6
    1 / -0
    The area of a triangle with the vertices $$(1, 2), (3, 4)$$ and $$(5, 6)$$, is ____ square units.
    Solution
    Area of the triangle with three vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$ is

    $$A=\dfrac { 1 }{ 2 } \left| { y }_{ 1 }({ x }_{ 2 }-{ x }_{ 3 })+{ y }_{ 2 }({ x }_{ 3 }-{ x }_{ 1 })+{ y }_{ 3 }({ x }_{ 1 }-{ x }_{ 2 }) \right|$$

    Therefore, the area of triangle with vertices $$(1,2)$$, $$(3,4)$$ and $$(5,6)$$ is:

    $$A=\dfrac { 1 }{ 2 } \left| 2(3-5)+4(5-1)+6(1-3) \right| =\dfrac { 1 }{ 2 } \left| -4+16-12 \right| =\dfrac { 1 }{ 2 } \left| 16-16 \right| =\dfrac { 1 }{ 2 } \left| 0 \right| =0$$

    Hence, the area of the triangle is $$0$$.
  • Question 7
    1 / -0
    In how many ways can 3 diamond cards be drawn simultaneously from a pack of cards?
    Solution
    Pack of cards $$52$$ 
    Diamond cards are $$13$$
    To select $$3$$ cards 
    Total number of  choices =$$^{ 13 }C_{ 3 }$$
    $$= \dfrac { 13\times 12\times 11 }{ 3\times 2\times 1 } \\ = 143\times 2\\ = 286$$
    Hence $$286$$ ways are possible and is a correct answer.
  • Question 8
    1 / -0
    Find the area of $$\Delta ABC$$, in which $$A = (2, 1), B = (3, 4)$$ and $$C = (-3, -2).$$
    Solution
    Area of triangle with vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$ is:
    $$A=\dfrac { 1 }{ 2 } \left| x_{ 1 }(y_{ 2 }-y_{ 3 })+x_{ 2 }(y_{ 3 }-y_{ 1 })+x_{ 3 }(y_{ 1 }-y_{ 2 }) \right|$$
    Therefore, the area of triangle with vertices $$(2,1)$$, $$(3,4)$$ and $$(-3,-2)$$ is:
    $$A=\displaystyle \frac { 1 }{ 2 } \left| 2(4-(-2))+3(-2-1)-3(1-4) \right| $$
    $$=\dfrac { 1 }{ 2 } \left| 2(6)+3(-3)-3(-3) \right| $$
    $$=\dfrac { 1 }{ 2 } \left| 12-9+9 \right|$$
    $$ =\dfrac { 1 }{ 2 } \left| 12 \right| =6$$ square units.
  • Question 9
    1 / -0
    A researcher plans to identify each participant in a $$174$$ certain medical experiment with a code consisting of either a single letter or a pair of distinct letters written in alphabetical order. What is the least number of letters that can be used if there are $$12$$ participants,and each participant is to receive a different code?
    Solution
    The number of single letter code possible are $$n$$ and no of distinct codes $$={^n{C}_{2}}$$
    So, $${^n{C}_{2}}+n\ge 12$$
    $$\dfrac{n(n-1)}{2}+n\ge 12$$
    $$n(n+1)\ge 24$$
    $$n$$ min $$=5$$ as least number is asked.
    Hence the answer is $$5.$$
  • Question 10
    1 / -0
    In a certain language '$$ \displaystyle +\div ?   $$' means 'where are you' , '$$ \displaystyle @-\div    $$' means ' we are here' , and '$$ \displaystyle +@\times    $$' means ' you come here' What is the code for ' Where' ?
    Solution
    s.no                        code                                                 sentence 
    1.                   $$ \displaystyle '+\div ?'    $$                                                  Where are you
    2.                   $$ \displaystyle '@-\div '    $$                                                 We are here
    3.                   $$ \displaystyle '+@\times    $$                                                   you come here

    As we can see that where is only in sentence $$1$$ [Where is the word for which we have to find the code ] Therefore we need to gather the codes for $$are$$ & $$you$$ to find out the code for where sentence 1 & 2 have the word $$are$$ in common and the symbol  $$ \displaystyle \div    $$ in common Therefore $$ \displaystyle \div    $$ is the symbol for $$are$$ 
    Sentence 1 & 3 have the word you in common and the symbol + in common therefore + stands for $$you$$ 

    thus, leaving only ?, which stands for $$where$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now