Self Studies

Straight Lines Test 34

Result Self Studies

Straight Lines Test 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A question paper on mathematics consists of twelve questions divided into three parts A, B and C, each containing four questions. In how many ways can an examinee answer five questions, selecting atleast one from each part.
    Solution
    Total no. of ways 
             $$A$$         $$B$$        $$ C$$                   $$A$$    $$B$$     $$ C$$
    $$=(^4C_1\times \ ^4C_1 \times \  ^4C_3)\times 3+ (^4C_1\, ^4C_2\, ^4C_2)\times 3$$        ($$\therefore$$ multiple by 3 as for each A,B,C different combination)
    $$=192+432$$
    $$=624$$
  • Question 2
    1 / -0
    The number of zeroes, at the end of $$50!$$, is
    Solution
    Solution-
    50!$$\rightarrow $$ Number of zeroes of the end
    Zeroes can be obtained by multiples of 10 
    as multiples of 5 and 2.
    5 zeroes there are many powers of 2 in 50!
    we need to find power of 5 in 50!
    Power $$ = 1(5)+1(15)+2(25)+1(35)+1(45)+1(50)$$
    $$ = 7 $$
    7 zeroes caused by 5, 15, 25, 35, 45, 50
    Total zeroes = 5+7 = 12

  • Question 3
    1 / -0
    Garlands are formed using 6 red roses and 6 yellow roses of different sizes. The number of arrangements in garland which have red roses and yellow roses come alternately is
    Solution

  • Question 4
    1 / -0
    If $$f(x)=1-x+x^2-x^3+....-x^{15}+x^{16}+x^{17}$$, then the coefficient of $$x^2$$ in $$f(x-1)$$ is?
    Solution
    $$f\left( x \right) = 1 - \left( {x - 1} \right) + {\left( {x - 1} \right)^2} - {\left( {x - 1} \right)^3} + {\left( {x - 1} \right)^4}.... - {\left( {x - 1} \right)^{15}} + {\left( {x - 1} \right)^{16}} + {\left( {x - 1} \right)^{17}}$$
    The coefficient of $${x^2}$$ by using binomial expansion
    $$^2{c_0}{x^2}{ + ^3}{c_1}{x^2}{ + ^4}{c_2}{x^2}{ + ^5}{c_3}{x^2}{ + ^6}{c_4}{x^2}{ + ^7}{c_5}{x^2}{ + ^8}{c_6}{x^2}{ + ^9}{c_7}{x^2}$$
    $${ + ^{10}}{c_8}{x^2}{ - ^{11}}{c_9}{x^2}{ + ^{12}}{c_{10}}{x^2}{ - ^{13}}{c_{11}}{x^2}{ + ^{14}}{c_{12}}{x^2}{ - ^{15}}{c_{13}}{x^2}{ + ^{16}}{c_{14}}{x^2}{ - ^{17}}{c_{15}}{x^2}$$
    $$ \Rightarrow {x^2}\left( {1 + 3 + 6 + 10 + 15 + 21 + 28 + 36 + 45 + 55 + 66 + 78 + 91 + 105 + 120 + 136} \right)$$
    = 372 + 444 = 816
  • Question 5
    1 / -0
    The three digits in 10! are:
    Solution
    As we know that $$10!=1\times 2\times 3\times 4\times 5\times 6\times 7\times 8\times 9\times 10$$
    $$10!=10^2(3\times 4\times 6\times 7\times 8\times 9)$$
    $$10!=10^2(3^4\times 2^6\times 7)$$
    $$10!=10^2(81\times 64\times 7)$$
    The last three digit in $$10!$$ is $$800$$
    The correct option is A.

  • Question 6
    1 / -0
    Area of the triangle formed by $$(x_{1,}y_{1}),(x_{2},y_{2}), (3y_{2},(-2y_{1}))$$
    Solution

    We have,

    $$ A\left( {{x}_{1}},{{y}_{1}} \right)=\left( {{x}_{1}},{{y}_{1}} \right) $$

    $$ B\left( {{x}_{2}},{{y}_{2}} \right)=\left( {{x}_{2}},{{y}_{2}} \right) $$

    $$ C\left( {{x}_{3}},{{y}_{3}} \right)=\left( 3{{y}_{2}},-2{{y}_{1}} \right) $$

    We know that the area of triangle is

    $$ Area\,of\,\Delta ABC=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right] $$

    $$ =\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}+2{{y}_{1}} \right)+{{x}_{2}}\left( -2{{y}_{1}}-{{y}_{1}} \right)+3{{y}_{2}}\left( {{y}_{1}}-{{y}_{2}} \right) \right] $$

    $$ =\dfrac{1}{2}\left[ {{x}_{1}}{{y}_{2}}+2{{x}_{1}}{{y}_{1}}-3{{x}_{2}}{{y}_{1}}+3{{y}_{2}}{{y}_{1}}-3{{y}_{2}}^{2} \right] $$

    Hence, the is the answer

  • Question 7
    1 / -0
    If $$p:q:r=1:2:3\;then$$ $$\sqrt {5{p^2} + {q^2} + {r^2}} $$ is equal to: 
    Solution
    Consider the problem

    Given, $$p:q:r=1:2:3$$

    Therefore, $$\frac{p}{1} = \frac{q}{2} = \frac{r}{4} = k$$  (let)

    So, $$p = k,q = 2k,r = 4k$$

    Therefore,

    $$\begin{array}{l} \sqrt { 5{ p^{ 2 } }+{ q^{ 2 } }+{ r^{ 2 } } }  \\ =\sqrt { 5{ k^{ 2 } }+4{ k^{ 2 } }+16{ k^{ 2 } } }  \\ =\sqrt { 25{ k^{ 2 } } }  \\ 5k=5p \end{array}$$

    Hence, Option $$B$$ is the correct answer which is $$5p$$
  • Question 8
    1 / -0
    $$7$$ boys and $$8$$ girls have to sit in a row on $$15$$ chairs numbered from $$1$$ to $$15$$ then?
    Solution
    $$\begin{matrix} G-denotes\, \, Girls \\ X-denotes\, \, boys \\ \Rightarrow G\times G\times G\times G\times G\times G\times G\times G \\ \Rightarrow Number\, \, of\, \, ways\, \, of\, Girls\, \, is\, \, 8!\, \, alternate \\ \Rightarrow Number\, \, of\, \, ways\, \, of\, boys\, \, is\, \, 7! \\ \, \, \, \, \, \, \, after\, \, late \\ \Rightarrow Number\, \, of\, \, boys\, \, and\, \, girls\, \, sit\, \, alternate\, \, =8!7! \\ When\, \, first\, \, and\, \, fifteen\, \, chair\, \, are\, \, fixed\, \, and\,  \\ \, first\, \, chair\, \, \times G\times G\times G\times G\times G\times G\times G\times fifteen\, \, chair\, \, between\, \, any\, \, two\, \, boys \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \underline { 9{ C_{ 4 } }8!7! } \, \, \, Ans. \\  \end{matrix}$$
  • Question 9
    1 / -0
    Replace the question mark (?) with the correct option.

    Solution

  • Question 10
    1 / -0
    A is a set containing n elements. A  subset P of A is chosen. The set A is reconstructed by replacing the element of P.A subset Q of A is again chosen. The number of way of choosing P and Q so that P Q =$$\phi $$ is :- 
    Solution
    Let A = $${a_{1},a_{2},a_{3},....a_{n}}$$. For $$a_{1}$$ $$\epsilon $$ For $$a_{1} \epsilon $$A we have following choices:
    (i) $$a_{1} \epsilon $$ P and $$a_{1} \epsilon $$ Q
    (ii) $$a_{1} \epsilon $$P $$\notin $$ 
    (iii) $$_{1}\notin P and a_{1}\epsilon Q$$
    (Iv)$$_{1}\notin P and a_{1}\notin  Q$$
    Out of these only (Ii), and (iii)  and (iv) imply $$a_{1}\notin P\cap Q $$ therefore, the number of ways in which none of $$a_{1},a_{2}.....a_{n}$$ belong $$P\cap Q$$ is $$3^{n}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now