Self Studies

Straight Lines Test 37

Result Self Studies

Straight Lines Test 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the following question, groups of letters are  given. Find the odd one out.
    Solution

  • Question 2
    1 / -0
    In how many ways atleast one horse and atleast one dog can be selected out of eight horses and seven dogs.
    Solution
    As we can either select or not select any horse; total ways for horses$$=2^r$$ ways to be excluded are when no horse is selected, which is only one way, therefore, favourable ways for horses$$=2^8-1$$
    similarly, favourable ways for dogs$$=2^7-1$$
    $$\Rightarrow$$ Total ways$$=(2^8-1)(2^7-1)$$.

  • Question 3
    1 / -0
    The total number of ways of arranging the letters $$AAABBBCCDEF$$ in a row such that letters $$C$$ are separated from one another is
    Solution

  • Question 4
    1 / -0
    The number of ways in which the letters of the word $$"ARRANGE"$$ can be permuted such that $$R's$$ occur together is 
    Solution

  • Question 5
    1 / -0
    $$\begin{bmatrix} 12 & 47 & 21 \\ 10 & 52 & 4 \\ 64 & ? & 24 \end{bmatrix}$$ 
    Solution
    $$\begin{bmatrix} 12 & 47 & 21\\ 10 & 52 & 4\\ 64 & ? & 24\end{bmatrix}$$
    We can see that dividing third number in each row with second digit of middle number and multiplying with first digit gives first member.
    Similarly, out of $$4$$ options, dividing $$24$$ by $$3$$ and multiplying by $$8$$ gives $$64$$.
    $$\Rightarrow$$ Option $$(B)$$.

  • Question 6
    1 / -0
    If $$64a^2+36b^2=400, ab=4 $$ , then $$8a+6b$$ is: 
    Solution
    Given  $$64a^2+36b^2=400,\quad ab=4$$
    We know 
    $$(a+b)^2=a^2+b^2+2ab$$
    therefore,
    $$(8a+6b)^2=(8a)^2+(6b)^2+2(8a)(6a)$$
                        $$=64a^2+36b^2+96ab$$
                        $$=400+96\times4$$
                        $$=400+384$$
    $$(8a+6b)^2=784$$
    $$8a+6b=\sqrt{784}$$
    $$8a+6b=28$$
  • Question 7
    1 / -0
    The number of positive integral solutions of the equation $$x _ { 1 } x _ { 2 } x _ { 3 } x _ { 4 } x _ { 5 } = 1050$$ is
    Solution
    We have,
    $${x_1}{x_2}{x_3}{x_4}{x_5} = 1050 = 2 \times 3 \times {5^2} \times 7$$
    Now,
    $$2,3$$ and $$7$$ can be put in any boxes $${x_1},{x_2},{x_3},{x_4}$$ and $${x_5}$$.
    Also $$5,5$$ can be distributed in $$5$$ boxes in
    $$^{2 + 5 - 1}{C_{5 - 1}}{ = ^6}{C_4} = 15$$Ways.
    So total no. of positive integral solutions $$=15 \times5 \times5 \times5$$
    $$=1875$$
    Option $$D$$ is correct answer.
  • Question 8
    1 / -0
    If the area of triangle formed by the points $$(2a,b),(a+b,2b+a)$$ and $$(2b,2a)$$ be $$\lambda$$ then the area of the triangle whose vertices are $$(a+b,a-b), (3b-a,b+3a)$$ and $$(3a-b,3b-a)$$ will be
    Solution
    Area of $$ \triangle  \,= \dfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2}) \right |$$
    Given area of triangle whose vertices are $$ (2a,b), (a+b,2b+a), (2b,2a)$$ is $$ \lambda $$
    $$\therefore \lambda  = \dfrac{1}{2}\left | 2a(2b+a-2a)+(a+b)(2a-b)+2b(b-2b-a) \right |  $$
    $$ \lambda  = \dfrac{1}{2}\left | 4ab+2a^{2}-4a^{2}+2a^{2}-ab+2ab-b^{2}+2b^{2}-4b^{2}-2ab \right |$$
    $$ \lambda  = \dfrac{1}{2}\left | 3ab - 3b^{2} \right | $$ __ (1)
    Now area of triangle whose vertices are $$ (a+b,a-b), (3b-a,b+3a), (3a-b,3b-a)$$ is given by
    Area $$ = \dfrac{1}{2}\left | (a+b)(b+3a-3b+a)+(3b-a)(3b-a-a+b)+(3a-b)(a-b-b-3a) \right |$$
    $$ = \dfrac{1}{2}\left | (a+b) (-2b+4a)+(3b-a)(4b-2a)+(3a-b)(-2a-2b) \right |$$
    $$ = \dfrac{1}{2}\left | -2ab+4a^{2}-2b^{2}+4ab+12b^{2}-6ab-4ab+2a^{2}-6a^{2}-6ab+2ab+2b^{2} \right |$$
    $$ = \dfrac{1}{2}\left | 12b^{2}-12ab \right |$$
    $$ = \dfrac{4}{2}\left | -(3ab-3b^{2}) \right |$$
    $$ = 4.\dfrac{1}{2}\left | 3ab-3b^{2} \right |$$
    $$ = 4 \lambda .$$
  • Question 9
    1 / -0
    If $$(1+x+x^2)^n=\displaystyle\sum^{2n}_{r=0}a_rx^r$$, then $$a_0a_{2r}-a_1a_{2r+1}+a_2a_{2r+2}-....=?$$
  • Question 10
    1 / -0
    If repetitions are not allowed, the number of numbers consisting of $$4$$ digits and divisible by $$5$$ and formed out of $$0,1,2,3,4,5,6$$ is 
    Solution
    $$\rightarrow$$ For divisibility by $$5$$, unit's place should be $$0$$ or $$5$$
    with $$0$$, ----$$0$$
             $$6$$ choices $$\Rightarrow ^6C_3\times 3!$$
                               $$=\dfrac{6!}{3!3!}\times 3!=6.5.4$$
                                                     $$=120$$
    with $$5$$, ----$$5$$
             $$6$$ choices $$=120$$
                               $$^5C_2\times 2!=10\times 2=20$$
                                $$\Rightarrow 120+120-20=220$$
                                                      $$\rightarrow (A)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now