Self Studies

Straight Lines Test 41

Result Self Studies

Straight Lines Test 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$16,40,100,250 , ?$$
    Solution

    $$16,40,100,250,?$$

    $${ \underline { 4 }  }^{ 2 },\underline { 4 } \times \underline { \left( 10 \right)  } ,{ \left( 10 \right)  }^{ 2 },\underline { 10 } \times \left( 25 \right) ,{ \left( 25 \right)  }^{ 2 }$$

    $$16,40,100,250,625$$.

  • Question 2
    1 / -0
    In the given figure (not drawn to scale), the coordinates of P, Q and R are (3, 0) (0, 5) and (0, -5) respectively. Find the area of $$\Delta PQR$$.

    Solution

  • Question 3
    1 / -0
    Find the missing number

    Solution
    $$\textbf{Step 1: Observe the numbers opposite to each other}$$
                    $$ \text{We can see that the number opposite to 196 is 14. Also, } \dfrac{196}{14}=14$$
                    $$\text{Hence, we can say the missing number has at least one factor of 14}$$
                    $$\text{We see the missing number is opposite to 154}$$
                    $$\text{Also, } 14\times11=154$$
                    $$\text{Hence, let's assume the missing number is 11}$$
    $$\textbf{Step 2: Verification}$$
                    $$\text{Let the missing number be x.}$$
                    $$\text{According to the question, }$$
                    $$\Rightarrow 14+196+x=221$$
                    $$\Rightarrow x=221-14-196$$
                    $$x=11$$
                    $$\text{Hence, it is verified that x=11}$$
    $$\textbf{Thus, the missing number is (A) 11.}$$
  • Question 4
    1 / -0
    Find : $$13,23,43,83,163 , ?$$
  • Question 5
    1 / -0
    The number of seven letter words that can be formed by using the letters of the word  $$SUCCESS$$  that the two  $$C$$ are together but no two  $$S$$  are together is
    Solution
    using the letters of the word  $$SUCCESS$$  that the two  $$C$$ are together but no two  $$S$$  are together 
    let two C's be 1 unit 
    $$\therefore $$ no. of ways $$=\frac{6!}{4!}=30$$
    We have to put 1 letter between one S
    So, No of ways$$=2\times 3!=12$$
    No. of ways=30-12=18
  • Question 6
    1 / -0
    Find the missing number :

    Solution
    $$\textbf{Step 1: Observe the numbers opposite to each other}$$
                    $$ \text{We can see that the number opposite to 315 is 21. Also, } \dfrac{315}{21}=15$$
                    $$\text{Hence, we can say the missing number has at least one factor of 15 }$$
                    $$\text{We see the missing number is opposite to 15}$$
                    $$\text{Also, } 15\times15=225$$
    $$\textbf{Step 2: Verification}$$
                    $$\text{Let the missing number be x.}$$
                    $$\text{ATQ, }$$
                    $$\Rightarrow 21+15+x=261$$
                    $$\Rightarrow x=261-21-15$$
                    $$x=225$$
                    $$\text{Hence, it is verified that x=225}$$
    $$\textbf{Thus, the missing number is D 225.}$$
  • Question 7
    1 / -0
    The value of $$^{47}C_{4}+\displaystyle \sum _{ j=1 }^{ 5 }\ ^{ \left( 52-j \right)  } { C }_{ 3 }$$ is
    Solution
    We  have,
    $$\begin{array}{l} ^{ 47 }{ C_{ 4 } }{ +^{ 51 } }{ C_{ 3 } }{ +^{ 50 } }{ C_{ 3 } }{ +^{ 49 } }{ C_{ 3 } }{ +^{ 48 } }{ C_{ 3 } }{ +^{ 47 } }{ C_{ 3 } } \\ { =^{ n } }{ C_{ r } }{ +^{ n } }{ C_{ r-1 } }{ =^{ n+1 } }{ C_{ r } } \\ { =^{ 48 } }{ C_{ 4 } }{ +^{ 48 } }{ C_{ 3 } }{ +^{ 49 } }{ C_{ 3 } }{ +^{ 50 } }{ C_{ 3 } }{ +^{ 51 } }{ C_{ 3 } } \\ { =^{ 49 } }{ C_{ 4 } }{ +^{ 49 } }{ C_{ 3 } }{ +^{ 50 } }{ C_{ 3 } }{ +^{ 51 } }{ C_{ 3 } } \end{array}$$
    Similarly,
    $$=^{52}{C_4}$$.
  • Question 8
    1 / -0
    $$496 : 204 : : 329 : ?$$
  • Question 9
    1 / -0
    Find the missing number.

    Solution

    $$ \textbf{ Step 1: Observing the difference between the adjacent numbers}$$

                     $$ \text{If we notice the adjacent numbers, we see } 4\times 2 -1 =7$$

                     $$ \text{Similarly, } 7 \times 2-1=13$$

                     $$ \text{Similarly, } 13\times2 -1=25$$

                     $$ \text{Similarly, } 25\times2-1=49$$

    $$ \textbf{Step 2: Calculating the missing number}$$

                    $$ \text{Thus, looking at the above observations, we can conclude the missing number will be:}$$

                    $$ \Rightarrow 49\times 2-1=97$$

    $$\textbf{Thus, the missing number is D 97}$$

  • Question 10
    1 / -0
    A committee of $$4$$ persons is to be formed from $$2$$ ladies, $$2$$ old men and $$4$$ young men such that it includes at least $$1$$ lady. at least $$1$$ old man and at most $$2$$ young men. Then the total number of ways in which this committee can be formed is :
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now